Какой раствор имеет величину рн 0.1. Водородный показатель (pH-фактор)

Водородный показатель , pH (лат. p ondus Hydrogenii — «вес водорода», произносится «пэ аш» ) — мера активности (в сильно разбавленных растворах эквивалентна концентрации) ионов водорода в растворе, которая количественно выражает его кислотность. Равен по модулю и противоположен по знаку десятичному логарифму активности водородных ионов, которая выражена в молях на один литр:

История водородного показателя pH .

Понятие водородного показателя введено датским химиком Сёренсеном в 1909 году. Показатель называется pH (по первым буквам латинских слов potentia hydrogeni — сила водорода, либо pondus hydrogeni — вес водорода). В химии сочетанием pX обычно обозначают величину, которая равна lg X , а буквой H в этом случае обозначают концентрацию ионов водорода (H + ), либо, вернее, термодинамическую активность гидроксоний-ионов.

Уравнения, связывающие pH и pOH .

Вывод значения pH .

В чистой воде при 25 °C концентрации ионов водорода ([H + ]) и гидроксид-ионов ([OH − ]) оказываются одинаковыми и равняются 10 −7 моль/л, это четко следует из определения ионного произведения воды, равное [H + ] · [OH − ] и равно 10 −14 моль²/л² (при 25 °C).

Если концентрации двух видов ионов в растворе окажутся одинаковыми, в таком случае говорится, что у раствора нейтральная реакция. При добавлении кислоты к воде, концентрация ионов водорода возрастает, а концентрация гидроксид-ионов понижается, при добавлении основания — напротив, увеличивается содержание гидроксид-ионов, а концентрация ионов водорода уменьшается. Когда [H + ] > [OH − ] говорится, что раствор оказывается кислым, а при [OH − ] > [H + ] — щелочным.

Чтоб было удобнее представлять, для избавления от отрицательного показателя степени, вместо концентраций ионов водорода используют их десятичный логарифм, который берется с противоположным знаком, являющийся водородным показателем — pH .

Показатель основности раствора pOH .

Немного меньшую популяризацию имеет обратная pH величина — показатель основности раствора , pOH , которая равняется десятичному логарифму (отрицательному) концентрации в растворе ионов OH − :

как во всяком водном растворе при 25 °C , значит, при этой температуре:

Значения pH в растворах различной кислотности.

  • Вразрез с распространённым мнением, pH может изменяться кроме интервала 0 - 14, также может и выходить за эти пределы. Например, при концентрации ионов водорода [H + ] = 10 −15 моль/л, pH = 15, при концентрации ионов гидроксида 10 моль /л pOH = −1 .

Т.к. при 25 °C (стандартных условиях) [H + ] [OH − ] = 10 14 , то ясно, что при такой температуре pH + pOH = 14 .

Т.к. в кислых растворах [H + ] > 10 −7 , значит, у кислых растворов pH < 7, соответственно, у щелочных растворов pH > 7 , pH нейтральных растворов равняется 7. При более высоких температурах константа электролитической диссоциации воды увеличивается, значит, увеличивается ионное произведение воды, тогда нейтральной будет pH = 7 (что соответствует одновременно возросшим концентрациям как H + , так и OH −); с понижением температуры, наоборот, нейтральная pH увеличивается.

Методы определения значения pH .

Существует несколько методов определения значения pH растворов. Водородный показатель приблизительно оценивают при помощи индикаторов, точно измерять при помощи pH -метра либо определять аналитическим путём, проводя кислотно-основное титрование.

  1. Для грубой оценки концентрации водородных ионов часто используют кислотно-основные индикаторы — органические вещества-красители, цвет которых зависит от pH среды. Самые популярные индикаторы: лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и др. Индикаторы могут быть в 2х по-разному окрашенных формах — или в кислотной, или в основной. Изменение цвета всех индикаторов происходит в своём интервале кислотности, зачастую составляющем 1-2 единицы.
  2. Для увеличения рабочего интервала измерения pH применяют универсальный индикатор , который является смесью из нескольких индикаторов. Универсальный индикатор последовательно изменяет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислой области в щелочную. Определения pH индикаторным способом затруднено для мутных либо окрашенных растворов.
  3. Применение специального прибора — pH -метра — дает возможность измерять pH в более широком диапазоне и более точно (до 0,01 единицы pH ), чем при помощи индикаторов. Ионометрический метод определения pH основывается на измерении милливольтметром-ионометром ЭДС гальванической цепи, которая включает стеклянный электрод, потенциал которого зависим от концентрации ионов H + в окружающем растворе. Способ обладает высокой точностью и удобством, особенно после калибровки индикаторного электрода в избранном диапазоне рН , что дает измерять pH непрозрачных и цветных растворов и поэтому часто применяется.
  4. Аналитический объёмный метод кислотно-основное титрование — тоже даёт точные результаты определения кислотности растворов. Раствор известной концентрации (титрант) каплями добавляют к раствору, который исследуется. При их смешивании происходит химическая реакция. Точка эквивалентности — момент, когда титранта точно хватает, для полного завершения реакции, — фиксируется при помощи индикатора. После этого, если известна концентрация и объём добавленного раствора титранта, определяется кислотность раствора.
  5. pH :

0,001 моль/Л HCl при 20 °C имеет pH=3 , при 30 °C pH=3,

0,001 моль/Л NaOH при 20 °C имеет pH=11,73 , при 30 °C pH=10,83,

Влияние температуры на значения pH объясняют разчной диссоциацией ионов водорода (H +) и не есть ошибкой эксперимента. Температурный эффект нельзя компенсировать за счет электроники pH -метра.

Роль pH в химии и биологии.

Кислотность среды имеет важное значение для большинства химических процессов, и возможность протекания либо результат той или иной реакции зачастую зависит от pH среды. Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований либо на производстве применяют буферные растворы, позволяющие сохранять почти постоянное значение pH при разбавлении либо при добавлении в раствор маленьких количеств кислоты либо щёлочи.

Водородный показатель pH часто применяют для характеристики кислотно-основных свойств разных биологических сред.

Для биохимических реакций сильное значение имеет кислотность реакционной среды, протекающих в живых системах. Концентрация в растворе ионов водорода зачастую оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-основного гомеостаза является задачей исключительной важности. Динамическое поддержание оптимального pH биологических жидкостей достигается под действием буферных систем организма.

В человеческом организме в разных органах водородный показатель оказывается разным.

Некоторые значения pH.

Вещество

Электролит в свинцовых аккумуляторах

Желудочный сок

Лимонный сок (5% р-р лимонной кислоты)

Пищевой уксус

Кока-кола

Яблочный сок

Кожа здорового человека

Кислотный дождь

Питьевая вода

Чистая вода при 25 °C

Морская вода

Мыло (жировое) для рук

Нашатырный спирт

Отбеливатель (хлорная известь)

Концентрированные растворы щелочей

Водородный показатель – рН – это мера активности (в случае разбавленных растворов отражает концентрацию) ионов водорода в растворе, количественно выражающая его кислотность, вычисляется как отрицательный (взятый с обратным знаком) десятичный логарифм активности водородных ионов, выраженной в молях на литр.

pН = – lg

Это понятие было введено в 1909 году датским химиком Сёренсеном. Показатель называется pH, по первым буквам латинских слов potentia hydrogeni – сила водорода, или pondus hydrogenii – вес водорода.

Несколько меньшее распространение получила обратная pH величина – показатель основности раствора, pOH, равная отрицательному десятичному логарифму концентрации в растворе ионов OH:

рОН = – lg

В чистой воде при 25°C концентрации ионов водорода () и гидроксид-ионов () одинаковы и составляют 10 -7 моль/л, это напрямую следует из константы автопротолиза воды К w , которую иначе называют ионным произведением воды:

К w = · =10 –14 [моль 2 /л 2 ] (при 25°C)

рН + рОН = 14

Когда концентрации обоих видов ионов в растворе одинаковы, говорят, что раствор имеет нейтральную реакцию. При добавлении к воде кислоты концентрация ионов водорода увеличивается, а концентрация гидроксид-ионов соответственно уменьшается, при добавлении основания – наоборот, повышается содержание гидроксид-ионов, а концентрация ионов водорода падает. Когда > говорят, что раствор является кислым, а при > – щелочным.

Определение рН

Для определения значения pH растворов широко используют несколько способов.

1) Водородный показатель можно приблизительно оценивать с помощью индикаторов, точно измерять pH-метром или определять аналитически путём, проведением кислотно-основного титрования.

Для грубой оценки концентрации водородных ионов широко используются кислотно-основные индикаторы – органические вещества-красители, цвет которых зависит от pH среды. К наиболее известным индикаторам принадлежат лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и другие. Индикаторы способны существовать в двух по-разному окрашенных формах – либо в кислотной, либо в основной. Изменение цвета каждого индикатора происходит в своём интервале кислотности, обычно составляющем 1-2 единицы (см. Таблица 1, занятие 2).

Для расширения рабочего интервала измерения pH используют так называемый универсальный индикатор, представляющий собой смесь из нескольких индикаторов. Универсальный индикатор последовательно меняет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислой области в щелочную. Определения pH индикаторным методом затруднено для мутных или окрашенных растворов.

2) Аналитический объёмный метод – кислотно-основное титрование – также даёт точные результаты определения общей кислотности растворов. Раствор известной концентрации (титрант) по каплям добавляется к исследуемому раствору. При их смешивании протекает химическая реакции. Точка эквивалентности – момент, когда титранта точно хватает, чтобы полностью завершить реакцию, – фиксируется с помощью индикатора. Далее, зная концентрацию и объём добавленного раствора титранта, вычисляется общая кислотность раствора.

Кислотность среды имеет важное значение для множества химических процессов, и возможность протекания или результат той или иной реакции часто зависит от pH среды. Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований или на производстве применяют буферные растворы, которые позволяют сохранять практически постоянное значение pH при разбавлении или при добавлении в раствор небольших количеств кислоты или щёлочи.

Водородный показатель pH широко используется для характеристики кислотно-основных свойств различных биологических сред (Табл. 2).

Кислотность реакционной среды особое значение имеет для биохимических реакций, протекающих в живых системах. Концентрация в растворе ионов водорода часто оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-основного гомеостаза является задачей исключительной важности. Динамическое поддержание оптимального pH биологических жидкостей достигается благодаря действию буферных систем.

3) Использование специального прибора – pH-метра – позволяет измерять pH в более широком диапазоне и более точно (до 0,01 единицы pH), чем с помощью индикаторов, отличается удобством и высокой точностью, позволяет измерять pH непрозрачных и цветных растворов и потому широко используется.

С помощью рН-метра измеряют концентрацию ионов водорода (pH) в растворах, питьевой воде, пищевой продукции и сырье, объектах окружающей среды и производственных систем непрерывного контроля технологических процессов, в т. ч. в агрессивных средах.

рН-метр незаменим для аппаратного мониторинга pH растворов разделения урана и плутония, когда требования к корректности показаний аппаратуры без её калибровки чрезвычайно высоки.

Прибор может использоваться в лабораториях стационарных и передвижных, в том числе полевых, а также клинико-диагностических, судебно-медицинских, научно-исследовательских, производственных, в том числе мясо-молочной и хлебопекарной промышленности.

Последнее время pH-метры также широко используются в аквариумных хозяйствах, контроля качества воды в бытовых условиях, земледелия (особенно в гидропонике), а также – для контроля диагностики состояния здоровья.

Таблица 2. Значения рН для некоторых биологических систем и других растворов

Система (раствор)

Двенадцатиперстная кишка

Желудочный сок

Кровь человека

Мышечная ткань

Панкреатический сок

Протоплазма клеток

Тонкая кишка

Морская вода

Белок куриного яйца

Апельсиновый сок

Томатный сок

ВОДОРОДНЫЙ ПОКАЗАТЕЛЬ (РН). Одно из важнейших свойств водных растворов – их кислотность (или щелочность), которая определяется концентрацией ионов Н + и ОН – (см . ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ. ЭЛЕКТРОЛИТЫ). Концентрации этих ионов в водных растворах связаны простой зависимостью = К w ; (квадратными скобками принято обозначать концентрацию в единицах моль/л). Величина Kw называется ионным произведением воды и при данной температуре постоянна. Так, при 0 о С она равна 0,11Ч 10 –14 , при 20 о С – 0,69Ч 10 –14 , а при 100 о С – 55,0Ч 10 –14 . Чаще всего пользуются значением K w при 25 о С, которое равно 1,00Ч 10 –14 . В абсолютно чистой воде, не содержащей даже растворенных газов, концентрации ионов Н + и ОН – равны (раствор нейтрален). В других случаях эти концентрации не совпадают: в кислых растворах преобладают ионы Н + , в щелочных – ионы ОН – . Но их произведение в любых водных растворах постоянно. Поэтому если увеличить концентрацию одного из этих ионов, то концентрация другого иона уменьшится во столько же раз. Так, в слабом растворе кислоты, в котором = 10 –5 моль/л, = 10 –9 моль/л, а их произведение по-прежнему равно 10 –14 . Аналогично в щелочном растворе при = 3,7Ч 10 –3 моль/л = 10 –14 /3,7Ч 10 –3 = 2,7Ч 10 –11 моль/л.

Из сказанного следует, что можно однозначно выразить кислотность раствора, указав концентрацию в нем только ионов водорода. Например, в чистой воде = 10 –7 моль/л. На практике оперировать такими числами неудобно. Кроме того, концентрации ионов Н + в растворах могут отличаться в сотни триллионов раз – примерно от 10 –15 моль/л (крепкие растворы щелочей) до 10 моль/л (концентрированная соляная кислота), что невозможно изобразить ни на каком графике. Поэтому давно договорились для концентрации ионов водорода в растворе указывать только показатель степени 10, взятый с обратным знаком; для этого концентрацию следует выразить в виде степени 10х, без множителя, например, 3,7Ч 10 –3 = 10 –2,43 . (При более точных расчетах, особенно в концентрированных растворах, вместо концентрации ионов используют их активности.) Этот показатель степени получил название водородного показателя, а сокращенно рН – от обозначения водорода и немецкого слова Potenz – математическая степень. Таким образом, по определению, рН = –lg[Н + ]; эта величина может изменяться в небольших пределах – всего от –1 до 15 (а чаще – от 0 до 14). При этом изменению концентрации ионов Н + в 10 раз соответствует изменение рН на одну единицу. Обозначение рН ввел в научный обиход в 1909 датский физикохимик и биохимик С.П.Л.Сёренсен, который занимался в то время изучением процессов, происходящих при сбраживании пивного солода, и их зависимостью от кислотности среды.

При комнатной температуре в нейтральных растворах рН = 7, в кислых растворах рН < 7, а в щелочных рН > 7. Приблизительно значение рН водного раствора можно определить с помощью индикаторов. Например, метиловый оранжевый при рН < 3,1 имеет красный цвет, а при рН > 4,4 – желтый; лакмус при рН < 6,1 красный, а при рН > 8 – синий и т.д. Более точно (до сотых долей) значение рН можно определить с помощью специальных приборов – рН-метров. Такие приборы измеряют электрический потенциал специального электрода, погруженного в раствор; этот потенциал зависит от концентрации ионов водорода в растворе, и его можно измерить с высокой точностью.

Интересно сравнить значения рН растворов различных кислот, оснований, солей (при концентрации 0,1 моль/л), а также некоторых смесей и природных объектов. Для малорастворимых соединений, отмеченных звездочкой, приведены рН насыщенных растворов.

Таблица 1. Водородные показатели для растворов

Раствор РН
HCl 1,0
H 2 SO 4 1,2
H 2 C 2 O 4 1,3
NaHSO 4 1,4
Н 3 РО 4 1,5
Желудочный сок 1,6
Винная кислота 2,0
Лимонная кислота 2,1
HNO 2 2,2
Лимонный сок 2,3
Молочная кислота 2,4
Салициловая кислота 2,4
Столовый уксус 3,0
Сок грейпфрута 3,2
СО 2 3,7
Яблочный сок 3,8
H 2 S 4,1
Моча 4,8–7,5
Черный кофе 5,0
Слюна 7,4–8
Молоко 6,7
Кровь 7,35–7,45
Желчь 7,8–8,6
Вода океанов 7,9–8,4
Fe(OH) 2 9,5
MgO 10,0
Mg(OH) 2 10,5
Na 2 CO 3 11
Ca(OH) 2 11,5
NaOH 13,0

Таблица позволяет сделать ряд интересных наблюдений. Значения рН, например, сразу показывают сравнительную силу кислот и оснований. Хорошо видно также сильное изменение нейтральной среды в результате гидролиза солей, образованных слабыми кислотами и основаниями, а также при диссоциации кислых солей.

Природная вода всегда имеет кислую реакцию (рН < 7) из-за того, что в ней растворен углекислый газ; при его реакции с водой образуется кислота: СО 2 + Н 2 О « Н + + НСО 3 2– . Если насытить воду углекислым газом при атмосферном давлении, рН полученной «газировки» будет равен 3,7; такую кислотность имеет примерно 0,0007%-ный раствор соляной кислоты – желудочный сок намного кислее! Но даже если повысить давление CO 2 над раствором до 20 атм, значение pH не опускается ниже 3,3. Это значит, что газированную воду (в умеренных количествах, конечно) можно пить без вреда для здоровья, даже если она насыщена углекислым газом.

Определенные значения рН имеют исключительно большое значение для жизнедеятельности живых организмов. Биохимические процессы в них должны протекать при строго заданной кислотности. Биологические катализаторы – ферменты способны работать только в определенных пределах рН, а при выходе за эти пределы их активность может резко снижаться. Например, активность фермента пепсина, который катализирует гидролиз белков и способствует таким образом перевариванию белковой пищи в желудке, максимальна при значениях рН около 2. Поэтому для нормального пищеварения необходимо, чтобы желудочный сок имел довольно низкие значения рН: в норме 1,53–1,67. При язвенной болезни желудка рН понижается в среднем до 1,48, а при язве двенадцатиперстной кишки может доходить даже до 105. Точное значение рН желудочного сока определяют путем внутрижелудочного исследования (рН-зонд). Если у человека понижена кислотность, врач может назначить прием с пищей слабого раствора соляной кислоты, а при повышенной кислотности – принимать противокислотные средства, например, гидроксиды магния или алюминия. Интересно, что если выпить лимонный сок, кислотность желудочного сока... понизится! Действительно, раствор лимонной кислоты лишь разбавит более сильную соляную кислоту, содержащуюся в желудочном соке.

В клетках организма рН имеет значение около 7, во внеклеточной жидкости – 7,4. Нервные окончания, которые находятся вне клеток, очень чувствительны к изменению рН. При механических или термических повреждениях тканей стенки клеток разрушаются и их содержимое попадает на нервные окончания. В результате человек чувствует боль. Скандинавский исследователь Олаф Линдал проделал такой эксперимент: с помощью специального безыгольного инъектора человеку впрыскивали сквозь кожу очень тонкую струйку раствора, которая не повреждала клетки, но действовала на нервные окончания. Было показано, что боль вызывают именно катионы водорода, причем с уменьшением рН раствора боль усиливается. Аналогично непосредственно «действует на нервы» и раствор муравьиной кислоты, который жалящие насекомые или крапива впрыскивают под кожу. Разным значением рН тканей объясняется также, почему при некоторых воспалениях человек чувствует боль, а при некоторых – нет.

Интересно, что впрыскивание под кожу чистой воды дало особенно сильную боль. Объясняется это странное на первый взгляд явление так: клетки при контакте с чистой водой в результате осмотического давления разрываются и их содержимое воздействует на нервные окончания.

В очень узких пределах должно оставаться значение рН крови; даже небольшое ее подкисление (ацидоз) или защелачивание (алкалоз) может привести к гибели организма. Ацидоз наблюдается при таких заболеваниях как бронхит, недостаточность кровообращения, опухоли легких, пневмония, диабет, лихорадка, поражения почек и кишечника. Алколоз же наблюдается при гипервентиляции легких (или при вдыхании чистого кислорода), при анемии, отравлении СО, истерии, опухоли мозга, избыточном потреблении питьевой соды или щелочных минеральных вод, приеме диуретических лекарств. Интересно, что рН артериальной крови в норме должно быть в пределах 7,37–7,45, а венозной – 7,34–7,43. Различные микроорганизмы также весьма чувствительны к кислотности среды. Так, патогенные микробы быстро развиваются в слабощелочной среде, тогда как кислую среду они не выдерживают. Поэтому для консервирования (маринование, соление) продуктов используют, как правило, кислые растворы, добавляя в них уксус или пищевые кислоты. Большое значение имеет правильный подбор рН и для химико-технологических процессов.

Поддержать нужное значение рН, не дать ему заметно отклониться в ту или другую сторону при изменении условий возможно при использовании так называемых буферных (от англ. buff – смягчать толчки) растворов. Такие растворы часто представляют собой смесь слабой кислоты и ее соли или слабого основания и его соли. Подобные растворы «сопротивляются» в определенных пределах (которые называются емкостью буфера) попыткам изменить их рН. Например, если попытаться немного подкислить смесь уксусной кислоты и ацетата натрия, то ацетат-ионы свяжут избыточные ионы Н + в малодиссоциированную уксусную кислоту, и рН раствора почти не изменится (ацетат-ионов в буферном растворе много, так как они образуются в результате полной диссоциации ацетата натрия). С другой стороны, если ввести в такой раствор немного щелочи, избыток ионов ОН – будет нейтрализован уксусной кислотой с сохранением значения рН. Аналогичным образом действуют и другие буферные растворы, причем каждый из них поддерживает определенное значение рН. Буферным действием обладают также растворы кислых солей фосфорной кислоты и слабых органических кислот – щавелевой, винной, лимонной, фталевой и др. Конкретное значение рН буферного раствора зависит от концентрации компонентов буфера. Так, ацетатный буфер позволяет поддерживать рН раствора в интервале 3,8–6,3; фосфатный (смесь КН 2 РО 4 и Na 2 HPO 4) – в интервале 4,8 – 7,0, боратный (смесь Na 2 B 4 O 7 и NaOH) – в интервале 9,2–11 и т.д.

Многие природные жидкости обладают буферными свойствами. Примером может служить вода в океане, буферные свойства которой во многом обусловлены растворенным углекислым газом и гидрокарбонат-ионами НСО 3 – . Источником последних, помимо СО 2 , являются огромные количества карбоната кальция в виде раковин, меловых и известняковых отложений в океане. Интересно, что фотосинтетическая деятельность планктона – одного из основных поставщиков кислорода в атмосферу, приводит к повышению рН среды. Происходит это в соответствии с принципом Ле Шателье в результате смещения равновесия при поглощении растворенного углекислого газа: 2Н + + СО 3 2– « Н + + НСО 3 – « Н 2 СО 3 « Н 2 О + СО 2 . Когда в ходе фотосинтеза CO 2 + H 2 O + hv ® 1/n(CH 2 O) n + O 2 из раствора удаляется СО 2 , равновесие смещается вправо и среда становится более щелочной. В клетках организма гидратация СО 2 катализируется ферментом карбоангидразой.

Клеточная жидкость, кровь также являются примерами природных буферных растворов. Так, кровь содержит около 0,025 моль/л углекислого газа, причем его содержание у мужчин примерно на 5% выше, чем у женщин. Примерно такая же в крови концентрация гидрокарбонат-ионов (их тоже больше у мужчин).

При исследовании почвы рН является одной из наиболее важных характеристик. Разные почвы могут иметь рН от 4,5 до 10. По значению рН, в частности, можно судить о содержании в почве питательных веществ, а также о том, какие растения могут успешно расти на данной почве. Например, рост фасоли, салата, черной смородины затрудняется при рН почвы ниже 6,0; капусты – ниже 5,4; яблони – ниже 5,0; картофеля – ниже 4,9. Кислые почвы обычно менее богаты питательными веществами, поскольку хуже удерживают в себе катионы металлов, необходимые растениям. Например, попавшие в почву ионы водорода вытесняют из нее связанные ионы Са 2+ . А вытесненные из глинистых (алюмосиликатных) пород ионы алюминия в больших концентрациях токсичны для сельскохозяйственных культур.

Для раскисления кислых почв используют их известкование – внесение веществ, постепенно связывающих избыток кислоты. Таким веществом могут служить природные минералы – мел, известняк, доломит, а также известь, шлак с металлургических заводов. Количество внесенного раскислителя зависит от буферной емкости почвы. Например, для известкования глинистой почвы требуется больше раскисляющих веществ, чем для песчаной.

Большое значение имеют измерения рН дождевой воды, которая может оказаться довольно кислой из-за присутствия в ней серной и азотной кислот. Эти кислоты образуются в атмосфере из оксидов азота и серы (IV), которые выбрасываются с отходами многочисленных производств, транспорта, котельных и ТЭЦ. Известно, что кислотные дожди с низким значением рН (менее 5,6) губят растительность, живой мир водоемов. Поэтому постоянно ведется контроль рН дождевой воды.

Илья Леенсон

Вода является слабым электролитом; она слабо диссоциирует по уравнению

При 25 °С в 1 л воды распадается на ионы 10-7 моль H2O. Концентрация ионов H+ и OH- (в моль/л) будет равна

Чистая вода имеет нейтральную реакцию. При добавлении в нее кислоты концентрация ионов H+ увеличивается, т.е. > 10-7 моль/л; концентрация ионов OH- уменьшается, т.е. меньше 10-7 моль/л. При добавлении щелочи концентрация ионов OH- увеличивается: > 10-7 моль/л, следовательно, меньше 10-7 моль/л.

На практике для выражения кислотности или щелочности раствора вместо концентрации используют ее отрицательный десятичный логарифм, который называют водородным показателем pH:

В нейтральной воде pH = 7. Значения pH и соответствующие им концентрации ионов H+ и OH- приведены в табл. 4.

Буферные растворы

Многие аналитические реакции проводят при строго определенном значении pH, которое должно сохраниться в течение всего времени проведения реакции. В ходе некоторых реакций pH может изменяться в результате связывания или высвобождения ионов H+. Для сохранения постоянного значения pH применяют буферные растворы.

Буферные растворы представляют собой чаще всего смеси слабых кислот с солями этих кислот или смеси слабых оснований с солями этих же оснований. Если, например, в ацетатный буферный раствор, состоящий из уксусной кислоты CH3COOH и ацетата натрия CH3COONa добавить некоторое количество такой сильной кислоты, как HCl, она будет реагировать с ацетат-ионами с образованием малодиссоциирующей CH3COOH:

Таким образом, добавленные в раствор ионы H+ не останутся свободными, а будут связаны ионами CH3COO-, и поэтому pH раствора почти не изменится. При добавлении раствора щелочи к ацетатному буферному раствору ионы OH- будут связаны недиссоциированными молекулами уксусной кислоты CH3COOH:

Следовательно, pH раствора и в этом случае также почти не изменится.

Буферные растворы сохраняют свое буферное действие до определенного предела, т.е. они обладают определенной буферной емкостью. Если ионов H+ или OH- оказалось в растворе больше, чем позволяет буферная емкость раствора, то pH будет изменяться в значительной степени, как и в небуферном растворе.

Обычно в методиках анализа указывается, каким именно буферным раствором следует пользоваться при выполнении данного анализа и как его следует приготовить. Буферные смеси с точным значением pH выпускают в виде в ампулах для приготовления 500 мл раствора.

pH = 1,00. Состав: 0,084 г гликокола (аминоуксусной кислоты NH2CH2COOH), 0,066 г хлорида натрия NaCl и 2,228 г соляной кислоты HCl.

pH = 2,00. Состав: 3,215 г лимонной кислоты C6H8O7-H2O, 1,224 г гидроксида натрия NaOH и 1,265 г соляной кислоты HCl.

pH = 3,00. Состав: 4,235 г лимонной кислоты C6H8O7-H2O, 1,612 г гидроксида натрия NaOH и 1,088 г соляной кислоты HCl.

pH = 4,00. Состав: 5,884 г лимонной кислоты C6H8O7-H2O, 2,240 г гидроксида натрия NaOH и 0,802 г соляной кислоты HCl.

pH = 5,00. Состав: 10,128 г лимонной кислоты C6H8O7-H2O и 3,920 г гидроксида натрия NaOH.

pH = 6,00. Состав: 6,263 г лимонной кислоты C6H8O7-H2O и 3,160 г гидроксида натрия NaOH.

pH = 7,00. Состав: 1,761 г дигидрофосфата калия KH2PO4 и 3,6325 г гидрофосфата натрия Na2HPO4-2H2O.

pH = 8,00. Состав: 3,464 г борной кислоты H3BO3, 1,117 г гидроксида натрия NaOH и 0,805 г соляной кислоты HCl.

pH = 9,00. Состав: 1,546 г борной кислоты H3BO3, 1,864 г хлорида калия, KCl и 0,426 г гидроксида натрия NaOH.

pH = 10,00. Состав: 1,546 г борной кислоты H3BO3, 1,864 г хлорида калия KCl и 0,878 г гидроксида натрия NaOH.

pH = 11,00. Состав: 2,225 г гидрофосфата натрия Na2HPO4-2H2O и 0,068 г гидроксида натрия NaOH.

pH = 12,00. Состав: 2,225 г гидрофосфата натрия Na2HPO4-2H2O и 0,446 г гидроксида натрия NaOH.

pH = 13,00. Состав: 1,864 г хлорида калия KCl и 0,942 г гидроксида натрия NaOH.

Отклонения от номинального значения pH достигают ±0,02 для растворов при pH от 1 до 10 и ±0,05 при pH от 11 до 13. Такая точность вполне достаточна для практических работ.

Для настройки pH-метров применяют стандартные буферные растворы с точными значениями pH.

1. Ацетатный буферный раствор с pH=4,62: 6,005 г уксусной кислоты CH3COOH и 8,204 г ацетата натрия CH3COONa в 1 л раствора.

2. Фосфатный буферный раствор с pH=6,88: 4,450 г гидрофосфата натрия Na2HPO4-2H2O и 3,400 г дигидрофосфата калия KH2PO4 в 1 л раствора.

3. Боратный буферный раствор с pH=9,22: 3,81 г тетрабората натрия Na2B4O7-10H2O в 1 л раствора.

4. Фосфатный буферный раствор с pH=11,00: 4,450 г гидрофосфата натрия Na2HPO4-2H2O и 0,136 г гидроксида натрия NaOH в 1 л раствора.

Для приготовления буферных растворов для агрохимического и биохимического анализа со значениями pH от 1,1 до 12,9 с интервалом в 0,1 применяют 7 основных исходных растворов.

Раствор 1. Растворяют 11,866 г гидрофосфата натрия Na2HPO4-2H2O в воде и разбавляют в мерной колбе водой до 1 л (концентрация раствора 1/15 М).

Раствор 2. Растворяют 9,073 дигидрофосфата калия KH2PO4 в 1 л воды в мерной колбе (концентрация 1/15 М).

Раствор 3. Растворяют 7,507 г гликокола (аминоуксусной кислоты) NH2CH2COOH и 5,84 г хлорида натрия NaCl в 1 л воды в мерной колбе. Из этого раствора путем смешивания с 0,1 н. раствором HCl готовят буферные растворы с pH от 1,1 до 3,5; смешиванием с 0,1 н. раствором NaOH готовят растворы с pH от 8,6 до 12,9.

Раствор 4. Растворяют 21,014 г лимонной кислоты C6H8O7-H2O в воде, добавляют к раствору 200 мл 1 н. раствора NaOH и разбавляют до 1 л водой в мерной колбе. Смешиванием этого раствора с 0,1 н. раствором HCl готовят буферные растворы с pH от 1,1 до 4,9; смешиванием с 0,1 н. раствором NaOH готовят буферные растворы с pH от 5,0 до 6,6.

Раствор 5. Растворяют 12,367 г борной кислоты H3BO3 в воде, добавляют 100 мл 1 н. раствора NaOH и разбавляют водой до 1 л в мерной колбе. Смешиванием этого раствора с 0,1 н. раствором HCl готовят буферные растворы с pH от 7,8 до 8,9; смешиванием с 0,1 н. раствором NaOH готовят буферные растворы с рН от 9,3 до 11,0.

Раствор 6. Готовят точно 0,1 н. раствор HCl;

Раствор 7. Готовят точно 0,1 н. раствор NaOH; дистиллированную воду для приготовления раствора кипятят 2 ч для удаления CO2. Раствор при хранении защищают от попадания CO2 из воздуха хлоркальциевой трубкой.

В некоторых растворах при хранении образуется налет плесени, для предотвращения этого к раствору прибавляют несколько капель тимола в качестве консервирующего средства. Для приготовления буферного раствора требуемого pH смешивают указанные растворы в определенном соотношении (табл. 5). Объем измеряют с помощью бюретки вместимостью 100,0 мл. Все значения pH буферных растворов в таблице приведены к температуре 20 °С.

Для приготовления исходных растворов используют реактивы квалификации хч. Гидрофосфат натрия Na2HPO4-2H2O предварительно дважды перекристаллизовывают. При второй перекристаллизации температура раствора не должна превышать 90 °С. Полученный препарат слегка увлажняют и высушивают в термостате при 36 °С в течение двух суток. Дигидрофосфат калия KH2PO4 также дважды перекристаллизовывают и высушивают при 110-120 °С. Хлорид натрия NaCl дважды перекристаллизовывают и сушат при 120 °С. Лимонную кислоту C6H8O7-H2O дважды перекристаллизовывают. При второй перекристаллизации температура раствора не должна быть выше 60 °С. Борную кислоту H3BO3 дважды перекристаллизовывают из кипящей воды и высушивают при температуре не выше 80 °С.

На значение pH оказывает влияние температура буферного раствора. В табл. 6 приведены отклонения pH в зависимости от температуры стандартных буферных растворов.

Для создания заданного pH в анализируемом растворе при комплексометрических титрованиях применяют буферные растворы следующего состава.

pH = 1. Соляная кислота, 0,1 н. раствор.

pH = 2. Смесь гликокола NH2-CH2-COOH и его солянокислой соли NH2-CH2-COOH-HCl. Твердый гликокол (0,2-0,3 г) прибавляют к 100 мл солянокислого раствора соли.

pH = 4-6,5. Ацетатная смесь 1 н. раствора ацетата натрия и 1 н. раствора уксусной кислоты. Растворы смешивают перед применением в равных объемах.

pH = 5. Смесь раствора 27,22 г кристаллического ацетата натрия и 60 мл 1 н. раствора HCl разбавляют до 1 л водой.

pH = 5,5. Ацетатная смесь. Растворяют 540 г ацетата натрия в воде и разбавляют до 1 л. К полученному раствору добавляют 500 мл 1 н. раствора уксусной кислоты.

pH = 6,5-8. Триэтаноламин и его солянокислая соль. Смешивают 1 М раствор триэтаноламина N(C2H4OH)3 и 1 М раствор HCl в равных объемах перед применением.

pH = 8,5-9,0. Аммиачно-ацетатная смесь. К 500 мл концентрированного аммиака добавляют 300 мл ледяной уксусной кислоты и разбавляют водой до 1 л.

pH = 9. Боратная смесь. Смешивают 100 мл 0,3 М раствора борной кислоты с 45 мл 0,5 н. раствора едкого натра.

pH = 8-11. Аммиак - хлорид аммония. Смешивают 1 н. раствор NH4OH и 1 н. раствор NH4Cl в равных объемах перед применением.

pH = 10. К 570 мл концентрированного раствора аммиака прибавляют 70 г хлорида аммония и разбавляют водой до 1 л.

рН = 11-13. Едкий натр, 0,1 н. раствор.

При комплексометрическом определении общей жесткости воды применяют буферные таблетки серо-бурого цвета, приготовленные совместно с индикатором (эриохром черный Т). К пробе воды (100 мл) достаточно добавить несколько капель раствора сульфида натрия (для маскировки тяжелых металлов), две буферные таблетки и 1 мл концентрированного аммиака. После растворения таблеток раствор окрашивается в красный цвет; его оттитровывают 0,02 М раствором ЭДТА до устойчивого зеленого окрашивания. 1 мл 0,02 М раствора ЭДТА соответствует 0,02 экв/л жесткости воды. Выпускаются в ГДР.

Измерение pH

Для определения pH растворов применяют специальные реактивы - индикаторы, а также приборы - pH-метры (электрометрическое определение pH).

Индикаторное определение pH. Чаще всего в аналитической практике pH растворов определяют приближенно с помощью реактивной индикаторной бумаги (в интервале 0,5-2,0 единицы pH). С помощью индикаторной универсальной бумаги можно определить pH более точно (в интервале 0,2-0,3 единицы pH). В табл. 7 и 8 приведены данные о реактивных и универсальных индикаторных бумагах.

Переход окраски универсальной индикаторной бумаги приведен в табл. 8 и 9. Полученные промежуточные цвета сопоставляют с прилагаемой шкалой сравнения и по ней находят значения pH испытуемого раствора. Индикаторные бумаги можно использовать для определения pH водных растворов с невысокой концентрацией солей и в отсутствие сильных окислителей. Определив pH с помощью универсальной индикаторной бумаги с интервалом pH = 1,0-11,0 или 0-12, уточняют полученный результат с помощью бумаги «Рифан» с более узким интервалом pH.

Электрометрическое измерение pH. Этот метод удобен для измерения pH цветных растворов, в которых практически невозможно. Для измерений используют приборы - pH-метры со стеклянным электродом, которым обычно заменяют водородный электрод. Очень редко для этой цели применяют сурьмяный или хингидронный электрод.

Стеклянные электроды применяют для определения pH растворов, содержащих тяжелые металлы, окислители и восстановители, а также коллоидных растворов и эмульсий. Определение pH со стеклянным электродом основано на изменении э.д.с. элемента, обратимого относительно ионов водорода.

Потенциал поверхности стекла, соприкасающегося с раствором кислоты, зависит от pH раствора. Это свойство стекла использовано в стеклянных электродах - индикаторах pH. Стеклянный электрод обычно имеет форму пробирки, донная часть которой выполнена в виде тонкостенной стеклянной пластинки или в виде шарика с толщиной стенок не более 0,01 мм. В стеклянный электрод наливают буферный раствор с известным pH и помещают в исследуемый раствор.

В качестве электрода сравнения используют каломельный электрод. Этот электрод представляет собой сосуд, на дне которого находится ртуть, соединенная с цепью платиновой проволокой. Над ртутью находится каломельная паста с кристаллами KCl, сверху насыщенные растворы KCl и каломели (Hg2Cl2). Контакт электрода с исследуемым раствором происходит через тонкое асбестовое волокно. Каломельный электрод сравнения можно применять для измерений pH при температуре не выше 60 °С; нельзя измерять pH растворов, содержащих фториды.

Прибор pH-метр проверяют и настраивают всегда по тому буферному раствору, pH которого близок к pH исследуемого раствора. Например, для измерения pH в области от 2 до 6 готовят буферный раствор по Зеренсену с pH = 3 или 4 или применяют стандартный буферный раствор с pH = 4,62.

В лабораторной практике для измерения pH применяют pH-метр ЛПУ-01, который предназначен для определения pH растворов в пределах от -2 до 14 с диапазоном через 4 единицы pH: -2-2; 2-4; 6-10; 10-14. Чувствительность прибора - 0,01 pH. Используют также pH-метр лабораторный специальный ЛПС-02; pH-метр типа ПЛ-У1 и переносной pH-метр-милливольтметр ППМ-03М1.

Промышленным преобразователем повышенной точности является pH-метр типа pH-261, который предназначается для измерений pH растворов и пульп. В полевых условиях для измерений pH водных растворов применяют pH-метр pH-47М; для измерений pH солевых почвенных вытяжек - pH-метр ПЛП-64; для молока и молочных продуктов применяют pH-метр pH-222-2. Работа на pH-метрах осуществляется согласно инструкции, прилагаемой к каждому прибору.

Загрузка...
Top