Регулирование на операционном усилителе. Типовые устройства систем регулирования

В статье будет рассмотрена стандартная на операционном усилителе, а также приведены примеры различных режимов работы этого прибора. На сегодняшний день ни одно устройство управления не обходится без усилителей. Это поистине универсальные приборы, которые позволяют выполнять различные функции с сигналом. О том, как работает и что конкретно позволяет сделать этот прибор, вы и узнаете далее.

Инвертирующие усилители

Схема инвертирующего усилителя на ОУ достаточно проста, вы ее можете увидеть на изображении. В ее основе находится операционный усилитель (схемы включения его рассмотрены в данной статье). Кроме этого, здесь:

  1. На резисторе R1 падение напряжения присутствует, по своему значению оно такое же, как входное.
  2. На резисторе R2 также имеется - оно такое же, как выходное.

При этом отношение выходного напряжения к сопротивлению R2 равно по значению отношению входного к R1, но обратно ему по знаку. Зная значения сопротивления и напряжения, можно вычислить коэффициент усиления. Для этого необходимо разделить выходное напряжение на входное. При этом операционный усилитель (схемы включения у него могут быть любыми) может иметь одинаковый коэффициент усиления независимо от типа.

Работа обратной связи

Теперь нужно более детально разобрать один ключевой момент - работу обратной связи. Допустим, на входе имеется некоторое напряжение. Для простоты расчетов примем его значение равным 1 В. Допустим также, что R1=10 кОм, R2=100 кОм.

А теперь предположим, что возникла какая-то непредвиденная ситуация, из-за которой на выходе каскада напряжение установилось на значении 0 В. Далее наблюдается интересная картина - два сопротивления начинают работать в паре, совместно они создают из себя делитель напряжения. На выходе инвертирующего каскада оно поддерживается на уровне 0,91 В. При этом ОУ позволяет фиксировать рассогласование по входам, а на выходе происходит уменьшение напряжения. Поэтому очень просто спроектировать схему на операционных усилителях, реализующую функцию усилителя сигнала от датчика, например.

И продолжаться это изменение будет до той самой поры, покуда не установится на выходе значение стабильное в 10 В. Именно в этот миг на входах операционного усилителя потенциалы окажутся равными. И они будут такими же, как потенциал земли. С другой стороны, если на выходе устройства продолжит уменьшаться напряжение, и оно будет меньше, чем -10 В, на входе потенциал станет ниже, нежели у земли. Следствие этого - на выходе начинает увеличиваться напряжение.

У такой схемы имеется большой недостаток - входной импеданс очень маленький, в особенности у усилителей с большим значением коэффициента усиления по напряжению, в том случае, если цепь обратной связи замкнута. А конструкция, рассмотренная дальше, лишена всех этих недостатков.

Неинвертирующий усилитель

На рисунке приведена схема неинвертирующего усилителя на операционном усилителе. Проанализировав ее, можно сделать несколько выводов:

  1. Значение напряжения UA равно входному.
  2. С делителя снимается напряжение UA, которое равно отношению произведения выходного напряжения и R1 к сумме сопротивлений R1 и R2.
  3. В случае, когда UA по значению равен входному напряжению, коэффициент усиления равен отношению выходного напряжения к входному (или же можно к отношению сопротивлений R2 и R1 прибавить единицу).

Называется данная конструкция неинвертирующим усилителем, у него практически бесконечный входной импеданс. Например, для операционных усилителей 411 серии его значение - 1012 Ом, минимум. А для операционных усилителей на биполярных полупроводниковых транзисторах, как правило, свыше 108 Ом. А вот выходной импеданс каскада, равно как и в ранее рассмотренной схеме, очень мал - доли ома. И это нужно учитывать, когда производится расчет схем на операционных усилителях.

Схема усилителя переменного тока

Обе схемы, рассмотренные в статье ранее, работают на Но вот если в качестве связи источника входного сигнала и усилителя выступает переменный ток, то придется предусматривать заземление для тока на входе устройства. Причем нужно обратить внимание на то, что значение тока крайне мало по величине.

В том случае, когда происходит усиление сигналов переменного тока, необходимо уменьшать коэффициент усиления сигнала постоянного до единицы. В особенности это актуально для случаев, когда коэффициент усиления по напряжению очень большой. Благодаря этому имеется возможность значительно снизить влияние напряжения сдвига, которое приводится к входу устройства.

Второй пример схемы для работы с переменным напряжением

В данной схеме на уровне -3 дБ можно видеть соответствие частоте 17 Гц. На ней у конденсатора импеданс оказывается на уровне двух килоом. Поэтому конденсатор должен быть достаточно большим.

Чтобы построить усилитель переменного тока, необходимо использовать неинвертирующий тип схемы на операционных усилителях. И у него должен быть достаточно большой коэффициент усиления по напряжению. Но вот конденсатор может быть чересчур большим, поэтому лучше всего отказаться от его использования. Правда, придется правильно подобрать напряжение сдвига, приравняв его по значению к нулю. А можно применить Т-образный делитель и увеличить значения сопротивлений обоих резисторов в схеме.

Какую схему предпочтительнее использовать

Большинство разработчиков отдают свое предпочтение неинвертирующим усилителям, так как у них очень высокий импеданс на входе. И пренебрегают схемам инвертирующего типа. Зато у последнего имеется огромное преимущество - он не требователен к самому операционному усилителю, который является его «сердцем».

Кроме того, характеристики, на поверку, у него значительно лучше. И с помощью мнимого заземления можно без особого труда все сигналы комбинировать, причем они не будут оказывать друг на друга какое-то влияние. Может использоваться в конструкциях и схема усилителя постоянного тока на операционном усилителе. Все зависит от потребностей.

И самое последнее - случай, если вся схема, рассмотренная здесь, подключается к стабильному выходу другого операционного усилителя. В этом случае значение импеданса на входе не играет существенной роли - хоть 1 кОм, хоть 10, хоть бесконечность. В этом случае первый каскад всегда выполняет свою функцию по отношению к следующему.

Схема повторителя

Работает повторитель на операционном усилителе аналогично эмиттерному, построенному на биполярном транзисторе. И выполняет аналогичные функции. По сути, это неинвертирующий усилитель, в котором у первого резистора сопротивление бесконечно большое, а у второго равно нулю. При этом коэффициент усиления равен единице.

Имеются специальные типы операционных усилителей, которые используются в технике лишь для схем повторителей. У них значительно лучшие характеристики - как правило, это высокое быстродействие. В качестве примера можно привести такие операционные усилители как OPA633, LM310, TL068. Последний имеет корпус, как у транзистора, а также три вывода. Очень часто такие усилители называют просто буферами. Дело в том, что они обладают свойствами изолятора (очень большой входной импеданс и крайне низкий выходной). Примерно по такому принципу строится и схема усилителя тока на операционном усилителе.

Активный режим работы

По сути, это такой режим работы, при котором выходы и входы операционного усилителя не перегружаются. Если на вход схемы подать очень большой сигнал, то на выходе его просто начнет резать по уровню напряжения коллектора или эмиттера. А вот когда на выходе напряжение фиксируется на уровне среза - на входах ОУ напряжение не меняется. При этом размах не может оказаться большим, нежели напряжение питания

Большая часть схем на операционных усилителях рассчитывается таким образом, что этот размах меньше питающего напряжения на 2 В. Но все зависит от того, какая используется конкретно схема усилителя на операционном усилителе. Такое же имеется ограничение на устойчивость на базе операционного усилителя.

Допустим, есть в источнике с плавающей нагрузкой некое падение по напряжению. В случае если ток имеет нормальное направление движения, можно встретить странную на первый взгляд нагрузку. Например, несколько переполюсованных батарей питания. Такая конструкция может применяться для того, чтобы получить прямой ток заряда.

Некоторые предосторожности

Простой усилитель напряжения на операционном усилителе (схема может быть выбрана любая) можно изготовить буквально "на коленке". Но потребуется учитывать некоторые особенности. Обязательно нужно удостовериться, что обратная связь в схеме отрицательная. Это также говорит о том, что недопустимо путать неинвертирующий и инвертирующий входы усилителя. Кроме того, должна присутствовать цепочка обратной связи для постоянного тока. Иначе операционный усилитель начнет быстро переходить в режим насыщения.

У большинства операционных усилителей входное дифференциальное напряжение очень маленькое по значению. При этом максимальная разность неинвертирующего и инвертирующего входов может ограничиваться значением 5 В при любом подключении источника питания. Если пренебречь данным условием, появятся на входе довольно большие значения токов, которые приведут к тому, что все характеристики схемы ухудшатся.

Самое страшное в этом - физическое разрушение самого операционного усилителя. В результате перестает работать схема усилителя на операционном усилителе полностью.

Следует учитывать

И, конечно же, нужно рассказать о правилах, которые стоит соблюдать, чтобы обеспечить стабильную и долговечную работу операционного усилителя.

Самое главное - ОУ обладает очень высоким коэффициентом усиления по напряжению. И если между входами напряжения изменятся на долю милливольт, на выходе его значение может измениться существенно. Поэтому важно знать: у операционного усилителя выход старается стремиться к тому, чтоб между входами разница напряжений оказалась близка (в идеале равна) к нулю.

Второе правило - потребление тока операционным усилителем крайне малое, буквально наноамперы. Если же на входах установлены полевые транзисторы, то оно исчисляется пикоамперами. Отсюда можно сделать вывод, что входы не потребляют ток, независимо от того, какой используется операционный усилитель, схема - принцип работы остается тем же.

Но не стоит думать, что ОУ действительно постоянно меняет на входах напряжение. Физически это осуществить почти нереально, так как не было бы соответствия со вторым правилом. Благодаря операционному усилителю происходит оценка состояния всех входов. При помощи схемы обратной внешней связи передается напряжение на вход с выхода. Результат - между входами операционного усилителя разница напряжений находится на уровне нуля.

Понятие обратной связи

Это распространенное понятие, и оно уже применяется в широких смыслах во всех областях техники. В любой системе управления имеется обратная связь, которая сравнивает выходной сигнал и заданное значение (эталонное). В зависимости от того, какое значение текущее - происходит корректировка в нужную сторону. Причем системой управления может быть что угодно, даже автомобиль, которые едет по дороге.

Водитель жмет на тормоза, и обратная связь здесь - начало замедления. Проведя аналогию с таким простым примером, можно лучше разобраться с обратной связью в электронных схемах. А отрицательная обратная связь - это если бы при нажимании педали тормоза автомобиль ускорялся.

В электронике обратной связью называют процесс, во время которого происходит передача сигнала с выхода на вход. При этом происходит также погашение сигнала на входе. С одной стороны, это не очень разумная идея, ведь может показаться со стороны, что значительно уменьшится коэффициент усиления. Такие отзывы, кстати, получали основоположники разработки обратной связи в электронике. Но стоит разобраться детальнее в ее влиянии на операционные усилители - практические схемы рассмотреть. И станет ясно, что она и правда немного уменьшает коэффициент усиления, но зато позволяет несколько улучшить остальные параметры:

  1. Сгладить частотные характеристики (приводит их к необходимой).
  2. Позволяет предсказывать поведение усилителя.
  3. Способна устранить нелинейность и искажения сигнала.

Чем глубже обратная связь (речь идет про отрицательную), тем меньшее влияние оказывают на усилитель характеристики с разомкнутой ОС. Результат - все его параметры зависят только от того, какие свойства имеет схема.

Стоит обратить внимание на то, что все операционные усилители работают в режиме с очень глубокой обратной связью. А коэффициент усиления по напряжению (с ее разомкнутой петлей) может достигать даже нескольких миллионов. Поэтому схема усилителя на операционном усилителе крайне требовательна к соблюдению всех параметров по питанию и уровню входного сигнала.

Регулятор выполняет вычисление рассогласования (разность между сигналом задания и сигналом обратной связи) и его пре­образование в управляющее воздействие в соответствии с опре­деленной математической операцией.

В САУ используются в основном следующие типы регуляторов: пропорциональный (П), интегральный (И) и пропорционально-интегральный (ПИ). В зави­симости от вида преобразуемых сигналов различают аналоговые и цифровые регуляторы.

Аналоговые регуляторы (АР) реализуют­ся на основе операционных усилителей, цифровые - на основе специализированных вычислительных устройств или микропро­цессоров. Аналоговые регуляторы преобразуют только аналого­вые сигналы, являющиеся непрерывными функциями времени. При прохождении через АР преобразуется каждое мгновенное значение непрерывного сигнала.

Для реализации АР операционный усилитель (ОУ) включает­ся по схеме суммирующего усилителя с отрицательной обратной связью. Тип регулятора и его передаточная функция определя­ются схемой включения резисторов и конденсаторов в цепях на входе и в обратной связи ОУ.

Пропорциональный регулятор (П-регулятор) реализуется при включении в цепь обратной связи ОУ резистора с сопротивлением R ос. Этот регулятор характеризуется коэффициентом пропорциональности к , который может быть равен как больше, так и меньше единицы.

Интегральный регулятор (И-регулятор) реализуется при включении в цепь обратной связи ОУ конденсатора С ос. Этого тип регулятора характеризуется постоянной времени Т .

Пропорционально-интегральный регулятор (ПИ-регулятор) реализуется при включении в цепь обратной связи ОУ резистора с сопротивлением R ос и конденсатора С ос. Такой регулятор характеризуется следующими параметрами: коэффициентом пропорциональности к и постоянной времени Т .

Для всех типов регуляторов в схеме реализации имеется входное сопротивление R 1.

Схемы реализации регуляторов, зависимость напряжения на выходе регулятораU вых от входного U вх и их графическое изображение, а также формулы для нахождения параметров регуляторов приведены в таблице 1

Таблица 1 - Регуляторы

Объясните, для чего предназначены датчики тока, какие к ним предъявляются требования. Приведите функциональные схемы электропривода постоянного тока с трансформаторным датчиком тока и датчиком тока на основе шунта.

Датчики тока (ДТ) предназначены для получе­ния информации о силе и направлении тока двигателя. К ним предъявляют следующие требования:

Линейность характеристики управления в диапазоне от 0,1I ном до 5I ном не менее 0,9;

Наличие гальванической развязки силовой цепи и системы управления;

Высокое быстродействие.


Датчик координат АЭПструктурно может быть представлен в виде последовательного соединения измерительного преобра­зователя (ИП) и согласующего устройства (СУ) (рисунок 1). Изме­рительный преобразователь преобразует координату х в электри­ческий сигнал напряжения и (или тока i), пропорциональный х. Согласующее устройство осуществляет преобразование выход­ного сигнала и ИП в сигнал обратной связи u ос, который по ве­личине и форме удовлетворяет САУ.

Рисунок 1 – Структурная схема датчика координат АЭП

В качестве измерительных преобразователей в ДТ использу­ются трансформаторы тока, дополнительные (компенсационные) обмотки сглаживающих дросселей, элементы Холла, шунты.

Широкое распространение для измерения тока двигателей получили датчики тока на основе шунтов. Шунт представляет собой четырехзажимный резистор с чисто активным сопротив­лением R ш (безындуктивный шунт), к токовым зажимам кото­рого подключается силовая цепь, а к потенциальным - измери­тельная. (рисунок 2)

Для ослабления влияния шунта на прохождение тока в цепи двигателя его сопротивление должно быть минимальным. Номи­нальное падение напряжения на шунте составляет обычно 75 мВ, поэтому его необходимо усилить с помощью усилителя У. Так как шунт имеет потенциальную связь с силовой цепью, датчик тока должен содержать устройство гальваниче­ской развязки (УГР). В качестве таких устройств применяются транс­форматорные и оптоэлектронные устройства.

Рисунок 2 – Схема включения датчика тока на основе шунта

ДТ на основе трансформаторов тока в основном используют­ся в АЭП постоянного тока для измерения тока двигателей при питании их от симметричных мостовых однофазных и трехфаз­ных выпрямителей. Для однофазного выпрямителя (рисунок 3) используется один трансфор­матор тока (ТА1), а для трехфазного - три трансформатора, включенных в звезду. Для обеспечения режима работы трансформаторов тока, близкого к режиму короткого за­мыкания, их вторичные обмотки нагружаются низкоомными ре­зисторами R ТТ (0,2...1,0 Ом). Преобразование переменного напряжения вторичных обмоток осуществляется выпрямителем VD1...VD4 .

Рисунок 2 – Схема включения датчика тока на основе трансформатора тока

13. Приведите функциональную схему датчика ЭДС якоря, объясните принцип её действия .

При невысоких требованиях к диапазону регу­лирования скорости (до 50) в качестве главной обратной связи в электроприводе применяется обратная связь по ЭДС. Принцип действия датчика ЭДС якоря основан на вычисле­нии ЭДС двигателя.


Функциональная схема датчика ЭДС представлена на рисунке 1.

Рисунок 1 – Функциональная схема датчика ЭДС якоря

Для измерения напряжения якоря используется делитель на резисторах R2, R3 . Для измерения тока якоря двигателя используется дополнительная обмотка L1.2 сглаживающего дросселя. Напряжение и я через делитель, RС-фильтр и повторитель А1 подается на сумматор А2. На вход сумматора А2 подается также сигнал, пропорциональный падению напряжения на обмотке якоря R я. ц ∙i я.

Выражение выходного напряжения u дэ усилите­ля А2 для установившегося режима работы имеет вид

где к дэ – коэффициент передачи датчика ЭДС,

е я – ЭДС якоря.


Для получения сигнала пропорционального напряжению на якоре двигателя резистивный делитель напряжения можно также включить по следующей схеме

Рисунок 2 – Схема включения датчика напряжения

Выходное напряжение делителя равно

Датчик напряжения помимо делителя может содержать также устройства гальванической развязки и

усилитель.

14. Начертите схему вертикальной одноканальной системы импульсно - фазового управления, объясните принцип её действия с помощью временных диаграмм.

Для управления тиристорами выпрямителя используется сис­тема импульсно-фазового управления (СИФУ), выполняющая следующие функции:

Определение моментов времени, в которые должны откры­ваться те или иные конкретные тиристоры; эти моменты време­ни задаются сигналом управления, который поступает с выхода САУ на вход СИФУ;

Формирование открывающих импульсов, передаваемых в нужные моменты времени на управляющие электроды тиристо­ров и имеющих требуемые амплитуду, мощность и длительность.

Рассмотрим работу вертикальной одноканальной СИФУ управляющей тиристорами однофазного мостового выпрямителя (рисунок 1).

Рисунок 1 – Схема однофазного мостового выпрямителя

Генератор переменного напряжения ГПН запускается при поступлении с синхронизатора С напряжения (рисунок 2). Это происходит в тот момент, когда к тиристорам прикладывается прямое напряжение, т.е. в точках естественной коммутации.

Рисунок 2 – Схема вертикальной одноканальной СИФУ

С выхода ГПН напряжение пилообразной формы поступает на устройство сравнения УС, где оно сравнивается с напряжением управления U у (рисунок 3). В момент равенства пилообразного и управляющего напряжений УС вырабатывает импульс, который через распределитель импульсов РИ поступает на формирователь импульсов ФИ1 или ФИ2 и дальше через выходной формирователь ВФ1 или ВФ2 на тиристоры выпрямителя. Выходные формирователи осуществляют усиление открывающих импульсов по мощности и потенциальное разделение СИФУ от силовой части. В качестве УС используется компаратор, выполненный на базе операционного усилителя.

Рисунок 3 – Диаграммы работы СИФУ

15. Приведите функциональную схему электропривода с трёхфазным нулевым реверсивным выпрямителем с совместным управлением и объясните принцип её действия.

При совместном управлении комплектами тиристоров, открывающие импульсы одновременно подаются на оба комплекта VS1, VS2, VS3 и VS4, VS5, VS6 (рисунок 1). При этом, в зависимости от направления вращения двигателя один комплект работает в выпрямительном режиме, а другой – в инверторном. Ток якоря протекает по комплекту, работающему в выпрямительном режиме.

Рисунок 1 – Совместное управление комплектами вентилей трёхфазного нулевого

реверсивного выпрямителя

Система управления тиристорами выпрямителя содержит две СИФУ (СИФУ1, СИФУ2) и аналоговый инвертор А1.

Если VS1, VS2, VS3 работают в выпрямительном режиме, а VS4, VS5, VS6 в инверторном, то двигатель вращается вперед. Если наоборот, то двигатель вращается назад.

Так как открывающие импульсы подаются на оба комплекта, то в схеме через два открытых вентиля, например VS1 и VS6, образуется замкнутый контур двух фаз вторичной обмотки транс­форматора TV1.

В этом контуре действует сумма ЭДС двух фаз вторичной обмот­ки, которая носит название уравнительной ЭДС:

где e 1 , е 2 - выпрямленные ЭДС комплектов VS1...VS3 и VS4... VS6 соответственно.

Уравнительная ЭДС е ур создает уравнительный ток I ур. По отношению к уравнительному току трансформатор TV1 находится в режиме короткого замыкания, т.к. активное и индуктивное сопротивления трансформатора малы. Поэтому для ограничения уравнительного тока в цепь его протекания включаются уравнительные реакторы L1 и L2.

Помимо включения уравнительных реакторов ограничение уравнительного тока достигается путем согласованного управле­ния комплектами, при котором постоянная составляющая урав­нительной ЭДС Е ур равна нулю, т.е.

E ур = E 1 + E 2 = E 0 (cosα 1 +cosα 2) = 0, (1)

где Е 1 ,Е 2 - постоянные составляющие ЭДС е 1 и e 2 соответствен­но; Е 0 - постоянная составляющая выпрямленной ЭДС при α = 0; α 1 , α 2 - углы открывания комплектов VS1...VS3 и VS4... VS6.

Условие (1) будет выполняться, когда a 1 + a 2 =p. Данное условие представляет собой условие согласованного управления комплектами тиристоров.

Совместное управление обладает следующими преимуществами:

· Уравнительные токи обеспечивают проводящее состояние обоих комплектов, независимо от величины тока нагрузки двигателей и как следствие линейность характеристик (нет режима прерывистых токов).

· Высоким быстродействием, благодаря постоянной готовности к реверсу тока, которая не связана с какими-либо переключениями в схеме.

Однако, при совместном управлении необходима установка уравнительных реакторов, что увеличивает массу, стоимость и габариты электропривода. Протекание уравнительных токов увеличивает нагрузку элементов силовой цепи и снижает КПД выпрямителя.

16. Начертите структурную схему электропривода с реверсивным выпрямителем с раздельным управлением и объясните принцип её действия .

Вреверсивном выпрямителе с раз­дельным управлением при работе одного комплекта тиристоров в выпрямительном или инверторном режиме другой комплект полностью выведен из работы (сняты открывающие импульсы). Вследствие этого отсутствует контур прохождения уравнитель­ного тока, что исключает необходимость в уравнительных реак­торах.

Структурная схема электропривода с реверсивным вы­прямителем с раздельным управлением (РВРУ) приведена на рисунке 1. Работу РВРУ обеспечивают дополнительные элементы системы управления тиристорами: датчик проводимости венти­лей (ДПВ), логическое переключающее устройство (ЛПУ), пере­ключатель характеристики (ПХ).


Рисунок 1 – Структурная схема электропривода с реверсивным выпрямителем

с раздельным управлением

ДПВ предназначен для определения состояния (открыт или закрыт) тиристоров выпрямителя и формирования сигнала об их запирании, что равносильно отсутствию тока в комплектах.

ЛПУ выполняет следующие функции:

Выбирает нужный комплект вентилей «Вперед» или «На­зад» (КВ «В» или КВ «Н») в зависимости от требуемого направле­ния тока двигателя, задаваемого сигналом U зт

Запрещает появление открывающих импульсов одновре­менно в обоих комплектах тиристоров посредством ключей «Впе­ред» («В») и «Назад» («Н»);

Запрещает подачу открывающих импульсов на вступающий в работу комплект до тех пор, пока в ранее работавшем комплек­те проходит ток;

Формирует временную паузу между моментом закрывания всех тиристоров ранее работавшего комплекта и моментом пода­чи открывающих импульсов на вступающий в работу комплект.

Переключатель характеристики служит для согласования однополярной регулировочной характеристики СИФУ α = ƒ(u у) с реверсивным сигналом U у.

Реверсирование двигателя начинается с изменения знака задания скорости, что вызывает изменение знака задания тока U зт. Это приводит к уменьшению напряжения управления U у, увеличению угла открывания α 1 тиристоров комплекта вентилей «Вперед», следовательно, уменьшению ЭДС Е 1 и, в итоге, снижению тока якоря до нуля. Закрывание вентилей фиксируется ДПВ. При получении сигнала с ДПВ, ЛПУ запрещает подачу импульсов на тиристоры обоих комплектов (размыкается «В»)и одновременно начинает отсчитывать временную паузу. После её окончания ЛПУ формирует разрешение на подачу открывающих импульсов на тиристоры комплекта вентилей «Назад» (замыкается «Н») и переключение ПХ. Переключение ПХ приводит к изменению полярности напряжения управления U у на входе СИФУ. С этого момента на КВ «Н» начинает подаваться открывающий импульс с углом α 2 , обеспечивающим работу комплекта в инверторном режиме. Так как ЭДС вращения больше Е 2 , то ток якоря протекает в обратном направлении. Двигатель переходит в генераторный режим работы, осуществляя рекуперативное торможение.

Раздельное управление обладает следующими преимуще­ствами:

Отсутствуют уравнительные реакторы, что значительно сни­жает габариты, массу и стоимость реверсивного выпрямителя;

Отсутствует уравнительный ток, что уменьшает потери мощности в выпрямителе и повышает его КПД.

Недостатками раздельного уравнения являются:

Наличие режима прерывистого тока, что требует линеариза­ции характеристик управления выпрямителя;

Более сложная система управления из-за наличия ЛПУ, ДПВ и ПХ;

Наличие бестоковой паузы при переключении комплектов.

Приведите и опишите замкнутые структуры ЭП построенные по принципу компенсации внешних возмущений и принципу отклонения. Начертите структурную схему двухконтурной системы подчиненного регулирования электропривода постоянного тока и опишите ее блоки.

Замкнутые структурные ЭП строятся по принципу компенсации внешних возмущений и принципу отклонения, называемому также принципом обратной связи.

Принцип компенсации рассмотрим на примере компенсации наиболее характерного внешнего возмущения электропривода – момента нагрузки Мс при регулировании его скорости ω (рисунок 1а).

Рисунок 1 – Замкнутые структуры ЭП

Основным признаком такой замкнутой структуры ЭП, является наличие цепи, по которой на вход ЭП вместе с задающим сигналом скорости Uзс подается сигнал пропорциональный моменту нагрузки

Uм = Км∙Мс, где Км-коэффициент пропорциональности.

В результате управления ЭП осуществляется суммарным сигналом U ∆ , который, автоматически изменяясь при колебаниях момента нагрузки, обеспечивает поддержание скорости на заданном уровне. Несмотря на эффективность, управления ЭП по этой схеме осуществляется редко, из-за отсутствия простых и надежных датчиков момента нагрузки Мс.

Поэтому в большинстве замкнутых схем используется принцип отклонения, который характеризуется наличием цепи обратной связи, соединяющей выход ЭП с его входом. В данном случае при регулировании скорости используется цепь обратной связи по скорости (рисунок 1б), по которой информация о текущем значении скорости (сигнал Uос=Кос∙ ω) подается на вход ЭП, где он вычитается из сигнала задания скорости Uзс. Управление осуществляется сигналом отклонения U ∆ =Uзс-Uос (его также называют сигналом рассогласования или ошибки), который при отличии скорости от заданной, соответственно автоматически изменяется и, с помощью САУЭП, устраняет эти отклонения.

В зависимости от вида регулируемой координаты в ЭП используется обратные связи по скорости, по положению, току, магнитному потоку, напряжению, ЭДС.

Система подчиненного регулирования.

Для управления движением ИО, иногда требуется регулировать несколько координат ЭП. Например, ток (момент) и скорость. В этом случае, замкнутые ЭП выполняются по схеме с подчиненным регулированием координат.

Рисунок 2 – Структурная схема двухконтурной системы подчинённого регулирования

В данной схеме регулирование каждой координаты осуществляется собственными регуляторами (тока РТ и скорости РС), которые вместе с соответствующими обратными связями с коэффициентами К ост и К осс, образуют замкнутые контуры. Эти контуры располагаются таким образом, что входным (задающим) сигналом для контура тока Uзт является выходной сигнал внешнего по отношению к нему контура скорости. Таким образом, внутренний контур тока будет подчинен внешнему контуру скорости – основной регулируемой координате ЭП. Сигнал U ∆ с выхода РТ подаётся на тиристорный преобразователь ТП. Электродвигатель ЭД представлен двумя частями: электрической (ЭЧД) и механической (МЧД).

Основное достоинство такой схемы заключается в возможности оптимальной настройке регулирования каждой координаты. Кроме того, подчинение контура тока к контуру скорости позволяет упростить процесс ограничения тока и момента, для чего необходимо лишь поддерживать на соответствующем уровне сигнал на выходе регулятора скорости (сигнал задания) уровня тока.

Объясните, для чего предназначены статические преобразователи частоты с промежуточным звеном постоянного тока (СПЧ ПЗПТ). Приведите структурные схемы СПЧ ПЗПТ, отличающиеся способом регулирования напряжения на статоре АД.

СПЧ ПЗПТ предназначены для преобразования переменного напряжения с постоянной амплитудой и частотой в переменное напряжение с регулируемой амплитудой и частотой.

Существуют три вида СПЧ ПЗПТ в зависимости от способа регулирования напряжения:

1. СПЧ ПЗПТ с управляемым выпрямителем

В этой схеме напряжение по амплитуде регулируется на выходе выпрямителя (рисунок 1).

Рисунок 1 - СПЧ ПЗПТ с управляемым выпрямителем

УВ – управляемый выпрямитель, преобразует энергию переменного тока в энергию постоянного тока.

Ф – фильтр, служит для сглаживания пульсации тока и напряжения.

И – инвертор, служит для преобразования постоянного тока в переменный ток.

СУВ – система управления выпрямителем.

СУИ – система управления инвертором.

ФП – функциональный преобразователь, служит для преобразования сигнала задания частоты U з. f . в сигнал задания напряжения U з. u . в зависимости от реализуемого закона частотного управления.

В зависимости от вида фильтра Ф в звене постоянного тока, автономный инвертор И делиться на АИ тока и АИ напряжения. В СПЧ на основе АИ тока, фильтр представляет собой реактор L с большой индуктивностью (рисунок 2а). Такой инвертор является источником тока, поэтому в этой схеме управляющим воздействием на двигатель является частота и ток статора.

Рисунок 2 - Схемы фильтров

АИ напряжения является источником напряжения, для чего фильтр кроме индуктивности L содержит конденсатор C большой ёмкости (рисунок 2б). Управляющим воздействием на двигатель в системе СПЧ с АИ напряжения являются амплитуда и частота напряжения.

2. СПЧ ПЗПТ с неуправляемым выпрямителем и преобразователем с широтно-импульсным управлением (ПШИУ) в звене постоянного тока (рисунок 3).

Рисунок 3 - СПЧ ПЗПТ с неуправляемым выпрямителем и ПШИУ

В этом случае регулирование напряжения осуществляется в ПШИУ, который устанавливается между неуправляемым выпрямителем НВ и инвертором И. Нерегулируемое постоянное напряжение с НВ поступает на ПШИУ, где регулируется по величине преобразовываясь в последовательность прямоугольных импульсов, фильтруется фильтром Ф и поступает на вход инвертора И.

3. СПЧ ПЗПТ с неуправляемым выпрямителем и с широтно-импульсной модуляцией напряжения в инверторе (рисунок 4).

Рисунок 4 - СПЧ ПЗПТ широтно-импульсной модуляцией напряжения в инверторе

В этой схеме регулирование амплитуды напряжения и частоты совмещено в И. Широтно-импульсная модуляция достигается с помощью сложного алгоритма переключения вентилей и может реализовываться только в преобразователях с управляемыми ключами: с силовыми транзисторами или с тиристорами с искусственной коммутацией.

Достоинства ШИМ-регуляторов с применением операционных усилителей так это то что можно применять практически любой ОУ (в типовой схеме включения, конечно).

Уровень выходного эффективного напряжения регулируется путём изменения уровня напряжения на неинвертирующем входе ОУ, что позволяет использовать схему как составную часть различных регуляторов напряжения и тока, а также схем с плавным зажиганием и гашением ламп накаливания.
Схема легка в повторении, не содержит редких элементов и при исправных элементах начинает работать сразу, без настройки. Силовой полевой транзистор подбирается по току нагрузки, но для уменьшения тепловой рассеиваемой мощности желательно использовать транзисторы, рассчитанные на большой ток, т.к. у них наименьшее сопротивление в открытом состоянии.
Площадь радиатора для полевого транзистора полностью определяется выбором его типа и током нагрузки. Если схема будет использоваться для регулирования напряжения в бортовых сетях + 24В, для предотвращения пробоя затвора полевого транзистора, между коллектором транзистора VT1 и затвором VT2 следует включить резистор сопротивлением 1 К, а резистор R6 зашунтировать любым подходящим стабилитроном на 15 В, остальные элементы схемы не изменяются.

Во всех ранее рассмотренных схемах в качестве силового полевого транзистора используются n - канальные транзисторы, как наиболее распространённые и имеющие наилучшие характеристики.

Если требуется регулировать напряжение на нагрузке, один из выводов которой подключен к "массе" , то используются схемы, в которых n - канальный полевой транзистор подключается стоком к + источника питания, а в цепи истока включается нагрузка.

Для обеспечения возможности полного открытия полевого транзистора схема управления должна содержать узел повышения напряжения в цепях управления затвором до 27 - 30 В, как это сделано в специализированных микросхемах U 6 080B ... U6084B , L9610, L9611 , тогда между затвором и истоком будет напряжение не менее 15 В. Если ток нагрузки не превышает 10А, можно использовать силовые полевые p - канальные транзисторы, ассортимент которых гораздо уже из - за технологических причин. В схеме изменяется и тип транзистора VT1 , а регулировочная характеристика R7 меняется на обратную. Если у первой схемы увеличение напряжения управления (движок переменного резистора перемещается к " +" источника питания) вызывает уменьшение выходного напряжения на нагрузке, то у второй схемы эта зависимость обратная. Если от конкретной схемы требуется инверсная от исходной зависимость выходного напряжения от входного, то в схемах необходимо поменять структуру транзисторов VT1 , т.е транзистор VT1 в первой схеме необходимо подключить как VT1 у второй схемы и наоборот.

Тема 11. Регуляторы координат в электроприводе

Важной функцией современных систем управления АЭП является регулирование его координат, т. е. поддержание с необходимой точностью требуемых значений тока, момента, ускорения, скорости. Основным элементом позволяющим выполнить указанную функцию, является регулятор.

р егулятор – это устройство, осуществляющее преобразование управляющего сигнала в соответствии с математической операцией, требуемой по условиям работы системы автоматического управления или регулирования. К типовым видам преобразования относятся: пропорциональное – П; пропорционально-интегральное – ПИ, пропорционально-интегро-дифференциальное – ПИД и ряд других.

Основу аналогового регулятора составляет операционный усилитель (ОУ) – усилитель постоянного тока с высоким коэффициентом усиления в разомкнутом состоянии. Наибольшее применение находят операционные усилители интегрального исполнения с корпусом круглой или прямоугольной формы. Операционный усилитель представляет собой многокаскадную структуру, в которой можно выделить входной дифференциальный усилитель ДУ с инвертирующим и прямым входами, усилитель напряжения УН, реализующий высокий коэффициент усиления, и усилитель мощности УМ, обеспечивающий необходимую нагрузочную способность операционного усилителя. Однокристальное малогабаритное исполнение операционного усилителя обусловливает высокую стабильность параметров, что позволяет получить высокий коэффициент усиления на постоянном токе. Интегральные ОУ, применяемые в промышленной электронике, обладают следующими характеристиками:

Дифференциальный коэффициент усиления в разомкнутом состоянии
k уо = 10 3 ¸ 10 5 ;

Входное сопротивление R вх > 100 кОм;

Выходное сопротивление R вых = 0,2 ¸1 кОм;

Сопротивление нагрузки R н > 2 кОм;

Полоса пропускания f п < 1 МГц;

Напряжение питания U п = ±15 В.

Для построения регуляторов обычно используют схему включения ОУ с инвертирующем входом, представленную на рис.11.1, которая имеет передаточную функцию

Используя активные и комплексные сопротивления во входной цепи (Z вх) и в обратной связи (Z ос) можно получать регуляторы с различными передаточными функциями.

Рассмотрим схемы, передаточные функции, логарифмические частотные характеристики (ЛАЧХ) и фазочастотные характеристики (ФЧХ) типовых регуляторов.



1. Пропорциональный (П-) регулятор – усилитель с жесткой отрицательной обратной связью.

Рис. 11.2. Схема П-регулятора и его характеристики

передаточная функция П-регулятора

– коэффициент усиления П–регулятора.

2. Интегральный регулятор (И-регулятор)

Рис. 11.3. Схема И-регулятора и его характеристики

передаточная функция И-регулятора

– постоянная интегрирования.

3.Пропорционально – интегральный регулятор (ПИ – регулятор) представляет собой параллельное соединение П- и И- регуляторов.

Рис. 11.4. Схема ПИ-регулятора и его характеристики

передаточная функция ПИ-регулятора

где

4. Пропорционально-дифференцирующий регулятор (ПД - регулятор).

Объединяет функции П- и Д- регуляторов. Получают параллельным подключением С вх к входному резистору R вх

Рис. 11.5. Схема ПД-регулятора и его характеристики

передаточная функция ПД-регулятора

где

Работа данной схемы сопровождается значительными высокочастотными помехами, для которых С вх представляет собой сопротивление, близкое к нулю. Для повышения устойчивости работы последовательно с конденсатором включают дополнительный резистор с небольшим сопротивлением ΔR вх, которое ограничивает токи высокочастотных помех. Передаточной функцией с ΔR вх:

где ΔТ R вх С вх, при ΔТ << Т 1 частотная характеристика практически не отличается от характеристики без ΔR вх.

5. Апериодический регулятор (инерционный первого порядка).

Рис. 11.6. Схема А-регулятора и его характеристики

передаточная функция А-регулятора

– постоянная времени апериодического звена.

Аналогичную передаточную функцию имеет схема (рис. 11.7).

Рис. 11.7. Схема А-регулятора (II вариант)

6. Пропорционально интегрально-дифференцирующий регулятор (ПИД). Выполняет функции одновременно трёх регуляторов.

Рис. 11.8. Схема ПИД- регулятора и его характеристики

передаточная функция ПИД-регулятора

где

Для снижения уровня помех на выходе регулятора и повышения устойчивости его работы последовательно с конденсатором С вх может быть включен резистор с небольшим сопротивлением ΔR вх (как для ПД регулятора).

Большими функциональными возможностями, по сравнению со стандартной схемой, имеет схема регулятора с функциональным потенциометром Z 1 , Z 2 . Для ослабления влияния помех на входе конденсаторы не используются, а включаются только активное сопротивление R вх.

Регулятор выполняет вычисление рассогласования и его преобразование в управляющее воздействие в соответствии с определенной математической операцией. ВСАУ используются в основном следующие типы регуляторов: пропорциональный (П), интегральный (И), пропорционально-интегральный (ПИ), пропорционально-интегрально-дифференциальный (ПИД). В зависимости от вида преобразуемых сигналов различают аналоговые и цифровые регуляторы. Аналоговые регуляторы (АР) реализуются на основе операционных усилителей, цифровые - на основе специализированных вычислительных устройств или микропроцессоров. Аналоговые регуляторы преобразуют только аналоговые сигналы, являющиеся непрерывными функциями времени. При прохождении через АР преобразуется каждое мгновенное значение непрерывного сигнала.

Для реализации АР операционный усилитель (ОУ) включается по схеме суммирующего усилителя с отрицательной обратной связью. Тип регулятора и его передаточная функция определяются схемой включения резисторов и конденсаторов в цепях на входе и в обратной связи ОУ.

При анализе регуляторов воспользуемся двумя основными допущениями, которые с высокой степенью точности выполняются для ОУ с отрицательной обратной связью в линейном режиме работы:

Дифференциальное входное напряжение U вх ОУ равно нулю;

Инвертирующий и неинвертирующий входы ОУ тока не потребляют, т.е. входные токи (рис. 2.2). Так как неинвертирующий вход подключен к шине «нуль», то, согласно первому допущению, потенциал φ а инвертирующего входа также равен нулю.

Рис. 2.2. Функциональная схема пропорционального регулятора

Перейдя к приращению переменных в уравнении (2.1) и использовав преобразование Лапласа, получим передаточную функцию П-регулятора:

где - коэффициент пропорционального усиления.

Таким образом, в П-регуляторе осуществляется пропорциональноеусиление (умножение на постоянную )сигнала рассогласования u рас.

Коэффициент может быть как больше, так и меньше единицы. На рис. 2.3 представлена зависимость u у = f(t) П-регулятора при изменении сигнала рассогласования u рас.

Интегральный регулятор (И-регулятор) реализуется при включении в цепь обратной связи ОУ конденсатора С ОУ (рис. 2.4). Передаточная функция И-регулятора

где - постоянная интегрирования, с.

Рис. 2.4. Функциональная схема интегрального регулятора

В И-регуляторе осуществляется интегрирование сигнала рассогласования u рас.

Пропорционально-интегральный регулятор (ПИ-регулятор) реализуется включением в обратную связь резистора R оу и конденсатора С ОУ (рис. 2.6).

Рис. 2.6. Функциональная схема ПИ-регулятора

Передаточная функция ПИ-регулятора

является суммой передаточных функций пропорционального и интегрального регуляторов. Так как ПИ-регулятор обладает свойствами П- и И-регуляторов, то он осуществляет одновременно пропорциональное усиление и интегрирование сигнала рассогласования u рас.

Пропорционально-интегрально-дифференциальный регулятор (ПИД-регулятор) реализуется в простейшем случае включением в ПИ-регуляторе параллельно резисторам R 3 и R OC конденсаторов С 3 и С ОС (рис. 2.8).

Рис. 2.8. Функциональная схема ПИД-регулятора

Передаточная функция ПИД-регулятора

где – коэффициент пропорционального усиления ПИД-регулятора; - постоянная дифференцирования; - постоянная интегрирования; ; .

Передаточная функция ПИД-регулятора является суммой передаточных функций пропорционального, интегрального и дифференциального регуляторов. ПИД-регулятор осуществляет одновременно пропорциональное усиление, дифференцирование и интегрирование сигнала рассогласования u рас.

17 Вопрос Датчики координат АЭП.

Структурная схема датчика. В АЭП (автоматизированный электропривод) для получения сигналов обратной связи по управляемым координатам используются датчики.Датчик представляет собой устройство, информирующее о состоянии управляемой координаты АЭП путем взаимодействия с ней и преобразования реакции на это взаимодействие в электрический сигнал.

Управляемыми в АЭП являются электрические и механические координаты: ток, напряжение, ЭДС, момент, скорость, перемещение и т.д. Для их измерения используют соответствую­щие датчики.

Датчик координат АЭП структурно может быть представлен в виде последовательного соединения измерительного преобразователя (ИП) и согласующего устройства (СУ) (рис. 2.9). Измерительный преобразователь преобразует координату х в электрический сигнал напряжения и (или тока i ), пропорциональный х. Согласующее устройство осуществляет преобразование выходного сигнала и ИП в сигнал обратной связи u ОС , который по величине и форме удовлетворяет САУ.

Рис. 2.9. Структурная схема датчика координат АЭП

Датчики тока. Датчики тока (ДТ) предназначены для получе­ния информации о силе и направлении тока двигателя. К ним предъявляют следующие требования:

Линейность характеристики управления в диапазоне от 0,1I ном до 5 I ном не менее 0,9;

Наличие гальванической развязки силовой цепи и системы управления;

Высокое быстродействие.

В качестве измерительных преобразователей в ДТ используются трансформаторы тока, дополнительные (компенсационные) обмотки сглаживающих дросселей, элементы Холла, шунты.

Широкое распространение для измерения тока двигателей получили датчики тока на основе шунтов. Шунт представляет собой четырехзажимный резистор с чисто активным сопротивлением R ш (безындуктивный шунт), к токовым зажимам которого подключается силовая цепь, а к потенциальным - измерительная.

По закону Ома падение напряжения на активном сопротивлении и=R ш i.

Для ослабления влияния шунта на прохождение тока в цепи двигателя его сопротивление должно быть минимальным. Номинальное падение напряжения на шунте составляет обычно 75 мВ, поэтому его необходимо усилить до требуемых значений (3,0...3,5 В). Так как шунт имеет потенциальную связь с силовой цепью, датчик тока должен содержать устройство гальванической развязки. В качестве таких устройств применяются трансформаторные и оптоэлектронные устройства. Структурная схема датчика тока на основе шунта приведена на рис. 2.13.

Рис. 2.13. Структурная схема датчика тока на основе шунта

В настоящее время все большее распространение получают датчики тока на основе элементов Холла, которые выполняются из полупроводникового материала в виде тонкой пластинки или пленки (рис. 2.14). При прохождении электрического тока I Х по пластинке, расположенной перпендикулярно к магнитному полю с индукцией В, в пластинке наводится ЭДС Холла e Х:

где - коэффициент, зависящий от свойств материала и размеров пластинки.

Датчики напряжения. В качестве измерительного преобразователя напряжения в электроприводе используются резистивные делители напряжения (рис. 2.16).

Рис. 2.16. Функциональная схема датчика напряжения

Выходное напряжение делителя.

Датчики ЭДС. При невысоких требованиях к диапазону регулированияскорости (до 50) в качестве главной обратной связи в электроприводе применяется обратная связь по ЭДС.

Рис. 2.17. Функциональная схема датчика ЭДС якоря

Датчики скорости. Для получения электрического сигнала, пропорционального угловой скорости ротора двигателя, используются тахогенераторы и импульсные датчики скорости. Тахогенераторы применяются в аналоговых САУ, импульсные - в цифровых.

К датчикам скорости предъявляются жесткие требования по линейности характеристики управления, стабильности выходного напряжения и уровню его пульсаций, так как они определяют статические и динамические параметры привода в целом.

Широкое распространение в электроприводе получили тахогенераторы постоянного тока с постоянными магнитами. Для уменьшения уровня оборотных пульсаций тахогенераторы встраиваются в электродвигатель.

В импульсных датчиках скорости в качестве первичного измерительного преобразователя используются импульсные преобразователи перемещения, у которых количество импульсов про­порционально углу поворота вала.

Датчики положения. В настоящее время в электроприводе для измерения пермещения подвижных частей машин и механизмов применяются индукционные и фотоэлектронные пре­образователи.

К индукционным относятся вращающиеся трансформаторы, сельсины и индуктосины. Индуктосины могут быть круговыми и линейными.

Вращающимися трансформаторами (ВТ) называются электрические микромашины переменного тока, преобразующие угол поворота α в синусоидальное напряжение, пропорциональное этому углу. В системе автоматического регулирования вращающиеся трансформаторы используются в качестве измерителей рассогласования, фиксирующих отклонение системы от некоторого заданного положения.

Вращающийся трансформатор имеет на статоре и роторе по две одинаковые однофазные распределенные обмотки, сдвинутые между собой на 90°. Напряжение с обмотки ротора снимается с помощью контактных колец и щеток или с помощью коль­цевых трансформаторов.

Принцип действия ВТ в синусном режиме основан на зависимости напряжения, наведенного в обмотке ротора пульсирую­щим магнитным потоком статора, от углового положения осей обмоток статора и ротора.

Сельсин представляет собой электрическую микромашину переменного тока, имеющую две обмотки: возбуждения и синхронизации. В зависимости от числа фаз обмотки возбуждения различают одно- и трехфазные сельсины. Обмотка синхронизации всегда трехфазная. В САУ широкое распространение получили бесконтактные сельсины с кольцевым трансформатором.

Обмотка синхронизации бесконтактного сельсина с кольце­вым трансформатором размещается в пазах статора, обмотка возбуждения - в пазах или на явно выраженных полюсах ротора сельсина. Особенность кольцевого трансформатора состоит в том, что его первичная обмотка располагается на статоре, а вторичная - на роторе. Обмотки имеют вид колец, размещенных в магнитной системе, состоящей из кольцевых магнитопроводов статора и ротора, которые на роторе соединяются внутренним магнитопроводом, а на статоре - внешним. В САУ сельсины используются в амплитудном и фазовращательном режимах.

Схема включения обмоток сельсина в амплитудном режиме представлена на рис. 2.19. Входной координатой сельсина в этом режиме является угол поворота ротора τ. За начало отсчета принята осевая линия обмотки фазы А.

Рис. 2.19. Функциональная схема включения обмоток сельсина в амплитудном режиме

Схема включения обмоток сельсина в фазовращательном режиме представлена на рис. 2,20. Входной координатой сельсина в этом режиме является угол поворота τ, а выходной - фаза φ выходной ЭДС е вых по отношению к переменному питающему напряжению.

Рис. 2.20. Функциональная схема включения обмоток сельсина в фазовращательном режиме

18 Вопрос Системы импульсно-фазового управления. Принципы управления тиристорами.

В выпрямителях в качестве управляемых ключей используются тиристоры. Для открывания тиристора необходимо выполнение двух условий:

Потенциал анода должен превышать потенциал катода;

На управляющий электрод необходимо подать открывающий (управляющий) импульс.

Момент появления положительного напряжения между анодом и катодом тиристора называется моментом естественного открывания. Подача открывающего импульса может быть задержана относительно момента естественного открывания на угол открывания. Вследствие этого задерживается начало прохожде­ния тока через вступающий в работу тиристор и регулируется напряжение выпрямителя.

Для управления тиристорами выпрямителя используется система импульсно-фазового управления (СИФУ), выполняющая следующие функции:

Определение моментов времени, в которые должны откры­ваться те или иные конкретные тиристоры; эти моменты време­ни задаются сигналом управления, который поступает с выхода САУ на вход СИФУ;

Формирование открывающих импульсов, передаваемых I в нужные моменты времени на управляющие электроды тиристоров и имеющих требуемые амплитуду, мощность и длительность.

По способу получения сдвига открывающих импульсов относительно точки естественного открывания различают горизонтальный, вертикальный и интегрирующий принципы управления.

При горизонтальном управлении (рис. 2.28) управляющее переменное синусоидальное напряжение u y сдвигается по фазе (по горизонтали) по отношению к напряжению u 1 , питающему выпрямитель. В момент времени ωt=α из управляющего напряжения формируются прямоугольные отпирающие импульсы U gt . Горизонтальное управление в электроприводах практически не применяется, что обусловлено ограниченным диапазоном регулирования угла α (около 120°).

При вертикальном управлении (рис. 2.29) момент подачи открывающихся импульсов определяется при равенстве управляющего напряжения u y (постоянного по форме) с переменным опорным напряжением (по вертикали). В момент равенства напряжений формируются прямоугольные импульсы U gt .

При интегрирующем управлении (рис. 2.30) момент подачи открывающих импульсов определяется при равенстве переменного управляющего напряжения и у с постоянным опорным напряжением U o п.В момент равенства напряжений формируются прямоугольные импульсы U gt .

Рис. 2.28. Горизонтальный принцип управления

Рис. 2.29. Вертикальный принцип управления

Рис. 2.30. Интегрирующий принцип управления

По способу отсчета угла открывания а СИФУ делят на многоканальные и одноканальные. В многоканальных СИФУ отсчет угла а для каждого тиристора выпрямителя производится в собственном канале, в одноканальных - в одном канале для всех тиристоров. В промышленном электроприводе преимущественное применение получили многоканальные СИФУ с вертикальным принципом управления.

Загрузка...
Top