Установка плавного пуска на болгарку. Плавный пуск и регулировка оборотов болгарки

Прототип конструкции на рисунке ниже использовался для регулировки накала ламп, то есть для работы на чисто активную нагрузку.


Основой конструкции является микросхема К1182ПМ1Р. Она узкоспециализированная, и как это сегодня не странно звучит, отечественного производства. В случае необходимости время старта можно увеличить, поставив большую емкость конденсатора С3. Пока идет заряд этого конденсатора, электродвигатель плавно увеличивает обороты до максимума. Резистор сопротивлением 68 кОм оптимально выбран для нашей схемы. Если хотите сделать регулятор мощности, тогда нужно заменить сопротивление R1 переменным. Сопротивление в 100 кОм, и больше.

  • Если добавить в силовую часть схемы симистор VS1 типа ТС-122-25, можно плавно запускать практически любую болгарку, мощностью от 600 до 2700 Вт. Для подключения электроинструмента мощностью до 1500 Вт, вполне хватит симисторов BT139, BT140. Симистор в рассматриваемой схеме полностью не отпирается, он отрезает около 15В сетевого напряжения, но это падение не сказывается на работе электроинструмента. Но при сильном нагреве последнего, обороты подключенного устройства существенно падают. Поэтому рекомендована установка симистора на радиатор.
  • В роли отличного корпуса из изоляционного материала подойдет типовая распределительная коробка. К ней привинчивается розетка и подсоединяется кабель с вилкой, что делает эту конструкцию очень похожей на удлинитель сделанный своими руками.

    Если хотите можно собрать чуть более сложную схему плавного пуска. Она является типовой для модуля XS–12. Он устанавливается в электроинструмент при заводском производстве многих фирм.


    Если хотите регулировать обороты подсоединенного электродвигателя, тогда конструкция немного усложняется: т.к устанавливается подстроечный резистор, на 100 кОм, и регулировочное сопротивление на 50 кОм.

    В целях экономии, можно оснастить регулятором оборотов типовую болгарку. Такой регулятор для шлифования корпусов различной радиоэлектронной аппаратуры является незаменимым инструментом в арсенале радиолюбителя.

    www.texnic.ru

    Плавный пуск болгарки своими руками продлит жизнь вашего инструмента и сэкономит средства

    Выбирая болгарку, человек задумывается о продолжительной службе инструмента. Считается: чем дороже инструмент, тем дольше он прослужит. Но иногда средств на дорогую покупку не хватает и приходится приобретать недорогую модель. В недорогих моделях болгарок отсутствует регулятор набора оборотов. Другие устройства, например, дрель, шуруповерт и перфоратор имеют регулятор набора скорости. А у углошлифовальной машины присутствует только кнопка включения. Тем самым болгарка быстрее ломается, потому что под действием резкого пуска из строя выходят редуктор и обмоточные провода якоря.

    Возможны следующие ситуации:

    • Действие высокой нагрузки на ось редуктора вызывает инерционный скачок, приводящий в отдельных случаях к выпадению инструмента из рук.
    • Величина крутящего момента в период пуска способствует изнашиванию шестерен редуктора.
    • Разрушение круга при перегрузке.

    Можно произвести модернизацию инструмента и получить в итоге болгарку с плавным пуском. Модернизацию по силам сделать самому. Плавный пуск для болгарки своими руками изготавливается двумя способами. Первый способ подразумевает покупку готового приспособления, у которого в наличии уже есть регулятор скорости и замедление начала работы двигателя в момент запуска. Это приспособление помещается внутрь устройства. Второй способ заключается в изготовке схемы, которая сделает пуск плавнее. Если происходит обрыв питающего шнура, схема подключается в обрыв.

    План изготовки схемы

    Схема плавного пуска болгарки предполагает использование известной микросхемы КР118ПМ1 для фазовой регулировки. В конструкции присутствуют семисторы. Умножение рабочей частоты достигается посредством установки резисторов, пропускающих ток в одном направлении. Преимуществом этой схемы является простота и отсутствие специальной наладки после сборки. Таким методом может воспользоваться любой человек, не имеющий специальных навыков, но работающий с паяльником.

    Основные принципы разработки схемы:

    • При выборе конденсатора С3 время разгона можно повысить;
    • Установленный резистор R1 с сопротивлением 68 кОм не требует замены на переменное сопротивление, так как обеспечивает ровный пуск моделей различной силы (0,6–1,5 кВт);
    • При желании оснащения регулятором мощности резистор R1 заменяется переменным сопротивлением. Величина более 100 кОм не способствует снижению напряжения на выходе. Выключения угловой шлифмашины происходят при замыкании ножек микросхемы;
    • При употреблении семистора вида ТС-122-25 происходит плавный запуск моделей мощностью 0,6–2,7 кВт. А также в этом случае имеется запас по мощности при заклинивании. Для моделей до 1500 Вт будут достаточны менее мощные семисторы (ВТ139 и Вт140).

    Процесс работы схемы

    Когда происходит замыкание кнопок пуска, ток поступает на микросхему. Напряжение на главном конденсаторе начинает возрастать. Оно доходит до рабочего значения по мере заряда. В зависимости от заряда конденсатора происходит открытие тиристоров. Открытие семистора VS1 осуществляется также с промедлением. Отдельный полупериод переменного напряжения характеризуется уменьшением задержки. В итоге на входе напряжение в инструмент повышается плавно. На основе этого запуск двигателя получается плавным. В итоге обороты наращиваются не быстро и инерционных скачков на редуктор не поступает.

    Установленный конденсатор С2 способствует пуску в течение 2 сек. Этого времени хватает для начала функционирования, а быстрый старт не повышает нагрузку. Выключение инструмента приводит к разрядке конденсатора С2 посредством сопротивления R1. При емкости 68 кОм период рязрядки длится 3 сек. После этого можно вновь запускать устройство.

    Значение силы тока, движущегося через вход семистора VS1, регулирует резистор R2. Конденсатор С1 считается деталью управления микросхемы. Резисторы и конденсаторы крепятся к ножкам микросхемы путем припаивания.

    Подключение функции плавного пуска

    Эта микросхема сопоставима с любым устройством, которое предусматривает напряжение 220 В. На разъем ХР1 подается энергопитание.

    Собранная схема помещается в пластиковый контейнер. В качестве него подойдет распределительная коробка. К блоку присоединяется розетка и провод с вилкой. Приспособление напоминает удлинитель. В розетку входит вилка угловой шлифмашины. Проверка работоспособности осуществляется при помощи тестера. Сначала определяется отрицательное сопротивление.

    Усложненный метод сбора

    Если имеются определенные навыки или опыт, то можно сделать усложненную схему ровного запуска. Она служит типовой схемой для модуля XS-12. Эта схема установлена во многих моделях электроинструмента, еще на заводе-изготовителе. При желании производить регулировку оборотов нужно установить подстроечный и регулировочный резистор емкостью 100 кОм и 50 кОм соответственно. Но существует и другой способ – поместить переменное напряжение 470 кОм посередине участка резистор-диод. Емкость резистора 47 кОм.

    Питание микросхемы происходит от напряжения 5–35 В. Вспомогательный полупроводниковый диод DZ не требуется, так как цепь питания выдает не более 25 В. Одновременно с конденсатором С2 рекомендуется присоединить резистор на 1 Мом.

    Следует помнить, что при включении подсоединенного к схеме инструмента нужно исключить нагрузку. В противном случае мягкий пуск может сгореть. Для начала нужно подождать достижения полной раскрутки, а потом начинать работу.

    Чтобы продлить срок эксплуатации угловой шлифмашины, иногда не нужно тратиться на дорогую модель. Достаточно будет разработать плавный пуск болгарки своими руками. Тогда ваш инструмент будет обладать надежностью и долгим сроком службы. Тем более приведенная схема многократно использовалась многими умельцами.

    pro-instrument.com

    Главная > Ремонт > Плавный пуск для электроинструмента, сделанный своими руками

    Плавный пуск для любого электроинструмента очень важен по следующим причинам. Во-первых, он помогает защитить электрическое устройство от поломок, что способствует более редким поездкам к мастерам-ремонтникам, а это значит практически полное отсутствие простоев и увеличение производительности труда. Во-вторых, наличие плавного пуска для электродвигателя экономит ваши деньги, которые могли бы пойти на оплату работы ремонтников или на покупку нового инструмента.

    В настоящей статье будет рассмотрено изготовление плавного пуска электродвигателя своими руками на примере болгарки или, иными словами, угловой шлифовальной машины.

    Зачем нужен блок плавного пуска

    В связи с некоторыми конструкционными особенностями, запуск болгарки приводит к появлению динамических нагрузок на устройство. Поскольку масса диска, с помощью которого осуществляется полезная работа, достаточно высока, то на коллекторный электродвигатель и редуктор аппарата воздействует мощные инерционные силы, что приводит к возникновению следующих негативных факторов:

    1. Во время старта, который у болгарки особенно резок, силы инерции очень сильно воздействуют на корпус устройства, что может привести к травме: вы просто не удержите инструмент и выпустите его. Поэтому при запуске электродвигателя болгарки всегда держите её обеими руками.
    2. Во время старта на электродвигатель воздействует перегрузка, вызванная подачей высокого напряжения тока. К чему это приводит? Прежде всего, страдает обмотка двигателя и происходит ускоренный износ щёток, которого не будет, если вы изготовите блок для плавного пуска. В противном случае будьте готовы к тому, что в один не очень прекрасный день в моторе произойдёт короткое замыкание, вызванное полным износом щёток. Это, в свою очередь, заставит вас раскошеливаться на ремонт или покупать новую шлифовальную машину.
    3. Быстро подаваемый крутящий момент на редуктор во время запуска приводит к ускоренному износу шестерёнок в редукторе вашей шлифовальной машины.
    4. Также имейте в виду, что резкий старт болгарки может разрушить диск, осколки которого могут причинить вам серьёзный вред, поэтому никогда не работайте без кожуха для защиты.

    Для того чтобы вам было более понятно, какие элементы шлифовальной машины больше всего страдают от резкого запуска, посмотрите на схему, представленную ниже.

    Конечно, некоторые компании, производящие шлифовальные машины, ещё на заводе комплектуют свои устройства блоком для плавного пуска. Однако, оснащение плавным пуском - это непозволительная роскошь для болгарок, входящих в бюджетный ценовой сегмент, поэтому если вы не хотите покупать дорогой электроинструмент, то вам грозит опасность столкнуться с проблемами, которые были описаны выше.

    Тем не менее, выход есть и он довольно прост: своими руками изготовить устройство для плавного пуска по одной из возможных схем. Если в корпусе вашего аппарата есть свободное место, то вы можете воспользоваться готовым устройством для плавного пуска и поставить его в болгарку.

    Делаем плавный пуск для болгарки своими руками

    Одна из наиболее часто применяемых схем для изготовления пускового устройства основана на микросхеме КР118ПМ1 и симисторах, составляющих силовую часть. По этой схеме вы сможете изготовить блок для плавного пуска, не обладая специализированными навыками и не имея глубоких познаний в электротехнике. Важно лишь то, чтобы вы умели паять.

    Графически эта схема выглядит следующим образом.

    Изготовленное самостоятельно устройство вы можете подключить к абсолютно любому электроинструменту, рассчитанному на напряжение в двести двадцать вольт. Блок плавного пуска, созданный на основе этой схемы, необязательно включать отдельной кнопкой, а можно подключить к штатной клавише шлифовальной машины. Если у вашей болгарки внутри корпуса есть свободное место, то можете установить блок в него либо сделайте для него отдельный корпус и подключите к электроинструменту через разрыв в питающем кабеле.

    Лучшим вариантом соединения блока плавного пуска и вашей шлифовальной машины будет следующий: на вход блока (разъём XS1) вы подаёте напряжение от источника электропитания с напряжением двести двадцать вольт. К выходу блока (разъём XP1) подключается вилка от болгарки.

    Принцип работы блока плавного пуска

    1. После того, как вы нажимаете на кнопку включения шлифовальной машины, в цепи появляется напряжение, которое первоначально направляется на микросхему, которая на схеме выше обозначена как DA1. Конденсатор, регулирующий величину напряжения, постепенно наращивает его до достижения рабочей величины. Из-за работы конденсатора тиристоры в микросхеме открываются с некоторой задержкой и медленно передают напряжение на силовую часть в симисторы VS1.
    2. Описанный выше процесс происходит периодами, которые становятся всё короче и короче, если отсчитывать их с момента запуска. В итоге подаваемое в шлифовальную машину напряжение возрастает медленно, а не скачкообразно, что и обуславливает плавность запуска электродвигателя.
    3. Время, в течение которого двигатель набирает рабочие обороты, зависит от ёмкости используемого конденсатора C2. Как правило, ёмкости, равной сорока семи микрофарадей, вполне достаточно, чтобы болгарка плавно стартовала за две секунды. Обычно этого периода времени хватает, чтобы убрать перегрузку с электродвигателя и редуктора.
    4. После того как вы закончите работу и выключите ваше устройство, резистор R1 своим сопротивлением разряжает конденсатор C1. Если номинал у резистора R1 составляет шестьдесят восемь килоом, то разряд занимает всего три секунды. Затем вы снова можете воспользоваться блоком плавного пуска, поскольку он будет готов к новому запуску шлифмашины.

    Если же вы хотите модернизировать блок до устройства, регулирующего обороты электродвигателя, то вместо постоянного резистора R1 поставьте переменный. В этом случае вы сможете регулировать его сопротивление, а значит влиять на обороты мотора.

    Симистор VS1 в вашем блоке должен соответствовать следующим характеристикам:

    • Сила тока, минимально пропускаемая им, равняется двадцать пять ампер.
    • Максимальное напряжение, на которое он рассчитан, - четыреста вольт.

    Эта испытанная многими мастерами схема была опробована на шлифмашине с мощностью, равной двум киловаттам, и имеет запас прочности по мощности до пяти киловатт, что становится возможным благодаря микросхеме КР118ПМ1.

    tehmaster.guru

    Плавный пуск болгарки

    Современный электроинструмент, выполненный на базе коллекторного электродвигателя переменного тока, практически весь оборудован встроенными устройствами плавного пуска и возможностью регулировки скорости вращения. Старые дрели, болгарки и прочее, легко можно оснастить такими устройствами, выполненными в виде выносного блока, либо встроенными в инструмент. Предлагаю очень простую схему, которая отлично работает и которой я пользуюсь около двух лет. Собрать такое устройство легко может даже начинающий радиолюбитель.

    Принципиальная схема:

    В таком виде схема обеспечивает плавный пуск и выход на номинальную скорость. Время разгона зависит от ёмкости конденсатора С3. Для регулировки скорости резистор R2 должен быть переменным, желательно группы А, или припаять переменник параллельно R2. В последнем случае желательно, чтобы их общее сопротивление было близким к номиналу (от этого зависит максимальное напряжение на двигателе). При желании регулятор можно встроить в рукоятку инструмента, хотя это уже более сложная доработка и, на мой взгляд, совершенно неоправданная. В таком случае проще купить в магазине. Но уж если решились на такую доработку, есть смысл заменить штатный силовой выключатель на слаботочный, что приведет к повышению надежности. Для этого надо параллельно резистору R2 и конденсатору C3 включить микропереключатель, используя нормально замкнутые контакты. У меня данное устройство собрано в корпусе разветвительной коробки, которую можно легко купить в любом магазине электротоваров. В принципе, такой вариант меня вполне устраивает. Последний раз я успешно использовал свою дрель в качестве шуруповерта, без реверса, конечно. Сделать реверс в принципе несложно, достаточно переключить концы одной из обмоток, но эта возня с проводами, с переключателем мне в лом… Симистор у меня стоит ТС 122-25-5, можно ставить практически любой с напряжением не ниже 4-го класса и током не ниже 1,5- 2 номиналов (на случай заклинивания).

    Внимание! Конструкция имеет гальваническую связь с сетью, что небезопасно для Вашей жизни и здоровья! Детали и элементы крепления должны быть изолированы!

    www.radiopill.net

    Сопряжен с высокими динамическими нагрузками. За счет массы рабочего диска, в начале вращения на ось редуктора действуют силы инерции. Это влечет за собой некоторые негативные моменты:

    1. Нагрузки на ось при резком старте создают инерционный рывок, который при большом диаметре и массе диска может вырвать электроинструмент из рук;
    2. ВАЖНО! При запуске болгарки, всегда держите инструмент обеими руками, и будьте готовы к его удержанию. В противном случае можно получить травму. Данное предупреждение особенно актуально для тяжелых алмазных или стальных дисков.

    3. При резкой подаче рабочего напряжения на двигатель, возникает перегрузка по току, которая проходит после набора номинальных оборотов;
    4. В результате чего изнашиваются щетки и перегреваются обе обмотки электромотора. При постоянном включении и выключении электроинструмента, перегрев может оплавить изоляцию обмоток и привести к короткому замыканию, с последующим дорогостоящим ремонтом.

    5. Большой крутящий момент при резком наборе оборотов преждевременно изнашивает шестерни редуктора УШМ;
    6. В некоторых случаях возможно отламывание зубьев и заклинивание редуктора.

    7. Перегрузки, которые воспринимает рабочий диск, могут разрушить его при запуске двигателя.
    8. Поэтому наличие защитного кожуха обязательно.

    ВАЖНО! Во время запуска болгарки, открытый сектор кожуха должен быть направлен в сторону, противоположную от оператора.

    Чтобы лучше понять механику работы, рассмотрим устройство болгарки на чертеже. Хорошо видны все элементы, испытывающие перегрузку при резком старте.

    Схематический чертеж расположение рабочих органов и систем управления в болгарке

    Для уменьшения пагубных воздействий резкого пуска, производители выпускают болгарки с регулировкой оборотов и плавным пуском.

    Регулировка оборотов находится на рукоятке инструмента

    Но таким приспособлением оснащаются лишь модели средней и высокой ценовой категории. Многие домашние мастера приобретают УШМ без регулятора и замедления пусковых оборотов. Особенно это касается мощных экземпляров с диаметром отрезного диска более 200 мм. Такую болгарку мало того что тяжело удержать в руках во время запуска, износ механики и электрической части происходит гораздо быстрее.
    Выход один – установить плавный пуск болгарки самостоятельно. Существуют готовые заводские устройства с регулятором оборотов и замедлением старта двигателя при запуске.

    Готовое устройство для регулировки плавного пуска

    Такие блоки устанавливаются внутрь корпуса, при наличии свободного места. Однако, большинство пользователей УШМ предпочитают изготавливать схему для плавного пуска болгарки самостоятельно, и подключать ее в разрыв питающего кабеля.

    Как изготовить схему плавного пуска угловой шлифовальной машины своими руками

    Популярная схема реализуется на основе управляющей микросхемы фазового регулирования КР118ПМ1, а силовая часть выполнена на симисторах. Такое устройство достаточно просто монтируется, не требует дополнительной настройки после сборки, а стало быть, изготовить ее может мастер без специализированного образования, достаточно уметь держать в руках паяльник.

    Электрическая схема регулировки плавного пуска для болгарки

    Предложенный блок можно подключить к любому электроинструменту, рассчитанному на переменное напряжение 220 вольт. Отдельный вынос кнопки питания не требуется, доработанный электроинструмент включается штатной клавишей. Схему можно установить как внутрь корпуса болгарки, таки и в разрыв питающего кабеля в отдельном корпусе.

    Наиболее практичным является подключение блока плавного пуска к розетке, от которой запитывается электроинструмент. На вход (разъем ХР1) подается питание от сети 220 вольт. К выходу (разъем XS1) подключается расходная розетка, в которую втыкается вилка УШМ.

    При замыкании клавиши пуска болгарки, по общей цепи питания подается напряжение на микросхему DA1. На управляющем конденсаторе происходит плавное нарастание напряжения. По мере заряда оно достигает рабочей величины. За счет этого тиристоры в составе микросхемы открываются не сразу, а с задержкой, время которой определяется зарядом конденсатора. Симистор VS1, управляемый тиристорами, открывается с такой же паузой.

    Посмотрите видео с подробным разъяснением как сделать и какую схему применить

    В каждом полупериоде переменного напряжения, задержка уменьшается в арифметической прогрессии, в результате чего напряжение на входе в электроинструмент плавно возрастает. Этот эффект и определяет плавность запуска двигателя болгарки. Следовательно обороты диска возрастают постепенно, и вал редуктора не испытывает инерционного шока.

    Время набора оборотов до рабочего значения определяется емкостью конденсатора С2. Величина 47 мкФ обеспечивает плавный пуск за 2 секунды. При такой задержке нет особого дискомфорта для начала работы с инструментом, и в то же время сам электроинструмент не подвергается избыточным нагрузкам от резкого старта.

    После выключения УШМ, конденсатор С2 разряжается сопротивлением резистора R1. При номинале 68 кОм время разряда составляет 3 секунды. После чего устройство плавного пуска готово к новому циклу запуска болгарки.
    При небольшой доработке, схему можно модернизировать до регулятора оборотов двигателя. Для этого резистор R1 заменяется на переменный. Регулируя сопротивление, мы контролируем мощность двигателя, меняя его обороты.

    Таким образом, в одном корпусе можно выполнить регулятор оборотов двигателя и устройство плавного пуска электроинструмента.

    Остальные детали схемы работают следующим образом:

    • Резистор R2 контролирует величину силы тока, протекающую через управляющий вход симистора VS1;
    • Конденсаторы С1 и С2 являются компонентами управления микросхемой КР118ПМ1, используемыми в типовой схеме включения.

    Для простоты и компактности монтажа, резисторы и конденсаторы припаиваются прямо к ножкам микросхемы.

    Симистор VS1 может быть любым, со следующими характеристиками: максимальное напряжение до 400 вольт, минимальный пропускной ток 25 ампер. Величина тока зависит от мощности угловой шлифовальной машины.

    По причине плавного пуска болгарки, ток не будет превышать номинального рабочего значения для выбранного электроинструмента. Для экстренных случаев, например, заклинивания диска УШМ – необходим запас по току. Поэтому значение номинальной величины в амперах следует увеличить вдвое.

    Номиналы радиодеталей, использованных в предлагаемой электросхеме – испытаны на УШМ мощностью 2 кВт. Запас по мощности имеется до 5 кВт, это связано с особенностью работы микросхемы КР118ПМ1.
    Схема рабочая, многократно исполненная домашними мастерами.

    Плавный пуск получил широкое применение в безопасном запуске электродвигателей. Во время запуска двигателя происходит превышение номинального тока (Iн) в 7 раз. В результате этого процесса происходит уменьшение эксплуатационного периода мотора, а именно обмоток статора и значительная нагрузка на подшипники. Именно из-за этой причины и рекомендуется сделать плавный пуск для электроинструмента своими руками, где он не предусмотрен.

    Общие сведения

    Статор электродвигателя представляет собой катушку индуктивности, следовательно, существуют сопротивления с активной и реактивной составляющей.

    При протекании электрического тока через радиоэлементы , имеющие сопротивление с активной составляющей, происходят потери, связанные с преобразованием части мощности в тепловой вид энергии. Например, резистор и обмотки статора электродвигателя обладают сопротивлением с активной составляющей. Вычислить активное сопротивление не составляет труда, так как происходит совпадение фаз тока (I) и напряжения (U). Используя закон Ома для участка цепи, можно рассчитать активное сопротивление: R = U/I. Оно зависит от материала, площади поперечного сечения, длины и его температуры.

    Если ток проходит через реактивный тип элементов (с емкостными и индуктивными характеристиками), то, в этом случае, появляется реактивное R. Катушка индуктивности, не имеющая практически активного сопротивления (при расчетах не учитывается R ее обмоток). Этот вид R создается благодаря Электродвижущей силе (ЭДС) самоиндукции, которая прямо пропорционально зависит от индуктивности и частоты I, проходящего через ее витки: Xl = wL, где w — угловая частота переменного тока (w = 2*Пи*f, причем f — частота тока сети) и L — индуктивность (L = n * n / Rm, n — число витков и Rm - магнитное сопротивление).

    При включении электродвигателя пусковой ток в 7 раз больше номинального (ток, потребляемый при работе инструмента) и происходит нагрев обмоток статора. Если статорная катушка является старой, то может произойти межвитковое КЗ, которое повлечет выход электроинструмента из строя. Для этого нужно применить устройство плавного пуска электроинструмента.

    Одним из методов снижения пускового тока (Iп) является переключение обмоток. Для его осуществления необходимы 2 типа реле (времени и нагрузки) и наличие трех контакторов.

    Пуск электромотора с обмотками, соединенными по типу «звезда» возможен только при 2-х не одновременно замкнутых контакторах. Через определенный интервал времени, который задает реле времени, один из контакторов отключается и включается еще один, не задействованный ранее. Благодаря такому чередованию включения обмоток и происходит снижение пускового тока. Этот способ обладает существенным недостатком, так как при одновременно замыкании двух контакторов возникает ток КЗ. Однако при использовании этого способа обмотки продолжают нагреваться.

    Еще одним способом снижения пускового тока является частотное регулирование запуска электродвигателя. Принципом такого подхода является частотное изменение питающего U. Основной элемент этого вида устройств плавного пуска является частотный преобразователь, состоящий из следующих элементов:

    1. Выпрямитель.
    2. Промежуточная цепь.
    3. Инвертор.
    4. Электронная схема управления.

    Выпрямитель изготавливается из мощных диодов или тиристоров , выполняющий роль преобразователя U питания сети в постоянный пульсирующий ток. Промежуточная цепь сглаживает пульсирующий постоянный ток на выходе выпрямителя, которая собирается на конденсаторах большой емкости. Инвертор необходим для непосредственного преобразования сигнала на выходе промежуточной цепи в сигнал амплитуды и частоты переменной составляющей. Электронная схема управления нужна для генерации сигналов, необходимых для управления выпрямителем, инвертором.

    Принцип действия

    Во время пуска электродвигателя коллекторного типа происходит значительное кратковременное увеличение тока потребления, которое и служит причиной преждевременного выхода из строя электроинструмента и сдачей его в ремонт. Происходит износ электрических частей (превышение тока в 7 раз) и механических (резкий запуск). Для организации «мягкого» пуска следует применять устройства плавного пуска (далее УПП). Эти устройства должны соответствовать основным требованиям:

    Наиболее широкое распространение получили симисторные УПП, принципом действия которых является плавное регулирование U при помощи регулировки угла открытия перехода симистора. Симистор нужно подключить напрямую к обмоткам двигателя и это позволяет уменьшить пусковой ток от 2 до 5 раз (зависит от симистора и схемы управления). К основным недостаткам симисторных УПП являются следующие:

    1. Сложные схемы.
    2. Перегрев обмоток при длительном запуске.
    3. Проблемы с запуском двигателя (приводит к значительному нагреву статорных обмоток).

    Схемы усложняются при использовании мощных двигателей, однако, при небольших нагрузках и холостом ходе возможно использование простых схем.

    УПП с регуляторами без обратной связи (по 1 или 3 фазам) получили широкое распространение. В моделях этого типа появляется возможность предварительного выставления времени пуска и величины U перед пуском двигателя. Однако, в этом случае невозможно регулировать величину вращающего момента при нагрузке. С этой моделью применяется специальное устройство для снижения пускового тока, защиты от пропадания и перекоса фаз, а также от перегрузок. Заводские модели имеют функцию слежения за состоянием электромотора.

    Простейшие схемы однофазного регулирования исполняются на одном симисторе и используются для инструмента с мощностью до 12 кВт. Существуют более сложные схемы, позволяющие производить регулировку параметров питания двигателя мощностью до 260 кВт. При выборе УПП заводского производства необходимо учесть такие параметры: мощность, возможные режимы работы, равенство допустимы токов и количество запусков в определенный промежуток времени.

    Применение в болгарке

    Во время запуска угловой шлифовальной машинки (УШМ) появляются высокие нагрузки динамического характера на детали инструмента.

    Дорогие модели снабжены УПП, но не обыкновенные разновидности, например, УШМ фирмы «Интерскол». Инерционный рывок способен вырвать из рук УШМ, при этом происходит угроза жизни и здоровью. Кроме того, при пуске электродвигателя инструмента происходит перегрузка по току и в результате этого - износ щеток и значительный нагрев статорных обмоток, изнашивается редуктор и возможно разрушение режущего диска, который может треснуть в любой момент и причинить вред здоровью, а может даже и жизни. Инструмент нужно обезопасить и для этого следует сделать болгарку с регулировкой оборотов и плавным пуском своими руками.

    Самодельные варианты

    Существует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор - полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.

    Простейшая схема

    УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.

    Схема 1. Электросхема внутреннего блока с регулировкой оборотов и плавным пуском (схема электрическая принципиальная)

    Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.

    Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).

    Плавный пуск на микросхеме

    Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.

    Схема 2. Схема плавного пуска электроинструмента

    Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.

    При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.

    Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.

    Основной функцией конденсаторов C1 и C3 является защита и управление микросхемой. Симистор следует подбирать, руководствуясь следующими характеристиками: прямое U должно составлять 400..500 В и прямой ток должен быть не менее 25 А. При таких номиналах радиоэлементов к УПП возможно подключать инструмент с мощностью от 2 кВт до 5 кВт.

    Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.

    Болгарка, или шлифовальная машина, – зачастую в хозяйстве просто необходима для выполнения работ по металлу. Кроме того, с её помощью можно выполнять чистку и деревянных, и каменных материалов. Сложно представить выполнение промышленных работ без болгарки. Это такой инструмент, который подойдёт как профессионалу в его деятельности, так и любителю в домашних работах по хозяйству.

    При выполнении работ своими руками важно, чтобы в электроинструменте был плавный пуск. Это особенно актуально, если часто приходится работать, а сеть не выдерживает напряжения инструмента.

    Бюджетный варианты угловых шлифовальных машин – УШМ – имеют ряд недостатков :

    1. У электроинструмента отсутствует возможность плавного, мягкого пуска. Это может привести к перебоям электроэнергии, так как болгарка в первые секунды после включения потребляет большое количество электричества. Также есть огромная вероятность порчи электродвигателя и поломки инструмента после того, как осуществлен не мягкий, пуск, а резкий, рывками.
    2. У электроинструмента, особенно простого китайского, нет в наличии регулятора оборотов (регулировкой оборотов можно обеспечить долгую работу инструмента без нагрузки на него).

    Поэтому при выборе инструмента очень важно обращать внимание на такие параметры, как регулировка оборотов и наличие плавного пуска. Кроме того, при выборе УШМ следует обращать внимание на мощность. Здесь основным показателем служит объём выполняемых работ.

    Если работа не масштабная и не частая на бытовом уровне, то подойдёт электроинструмент с регулировкой в 125 мм и мощностью между 600-900 Вт.

    Для объёмной работы в промышленных масштабах следует использовать УШМ мощнее примерно в два раза. Ещё к основным показателям кроме технических характеристик, относится безопасность. Болгарка должна быть безопасной. Что это значит? Во-первых, как уже было сказано, наличие плавного пуска, предотвращающего скачки напряжения во время включения. Автоматические предохранители, необходимые для экстренной остановки мотора во время сбоя системы. Предохранители служат регулятором, когда круг клинит. Обеспечивается защита от пыли. Она необходима при частом использовании болгарки, чтобы пыль не скапливалась в инструменте.

    Важна функция теплоотвода. Теплоотвод защищает от перегрева. Во время работы, особенно если работы продолжительные, корпус машины подвержен сильному нагреванию, чтобы не было перегрева и необходим отвод тепла. При перегрузке УШМ останавливается – это происходит во время нагревания, приближающемуся к 200 о С. Ну и балансировка диска служит для снижения неприятной вибрации и биения инструмента при работе, особенно этому воздействию подвержены старые изношенные диски. Обращать внимание и уделять внимание безопасности при выборе инструмента и при дальнейшей работе с ним очень важно.

    При выборе инструмента стоит отметить, что существуют болгарки с одной и с двумя ручками. Здесь следует полагаться исключительно на удобство. Двуручные модели скорее всего будут более удобными при держании, однако такие инструменты тяжелее по весу, одноручные модели также придётся держать двумя руками, но такие УШМ меньше по размеру и весу.

    Лидерам на рынке электроинструментов является фирма Bosch. Инструменты данной фирмы обладают всеми необходимыми характеристиками от удобства до безопасности. Также плюсами инструментов фирмы Bosсh является то, что есть хорошая вентиляция.

    Bt136 600E: схема включения регулировки напряжения

    Дешёвые болгарки, не обладающие достаточной мощностью, производители не обременяют схемами включения регулировки напряжения, иначе такие болгарки уже были бы не из дешевых. При пуске болгарки, если он плавный, процесс осуществляется через переходник, соединенный контактами с блоком выпрямителя. Блок выпрямителя преобразовывает ток.

    Но иногда болгарку имеет смысл модернизировать с помощью установленной схемы. Электросхема собирается достаточно просто. Сделать ее не сложно, и в готовую схему можно при желании подключать не только болгарку, но любой другой инструмент. Однако в инструменте должен быть коллекторный двигатель, а не асинхронный.

    Самодельный подход к созданию схемы будет заключаться в следующем :

    • Для начала работы следует скачать плату, если её нет;
    • В качестве силового звена используется симистор Bt136 600E;
    • При работе симистор будет нагреваться, чтобы этого избежать, устанавливается теплоотвод;
    • Используемые резисторы дают сопротивление току, обеспечивая токогашение;
    • Настройка регулятора происходит за счет многооборотного подстроечного резистора;
    • Для проверки следует подключить лампочку;
    • После подключения лампочку необходимо отключить – симистор должен быть холодным;
    • Подключение полученной схемы к болгарке.

    Если правильно подключена плата, симистор и резисторы УШМ должны запускаться плавно, а также использование частоты вращения должно регулироваться. После этого можно апробировать болгарку в деле. Подобные знания могут понадобиться при ремонте неисправностей электродвигателя. Например, когда повышается напряжение или имеет место неправильная балансировка.

    Регулятор оборотов для болгарки своими руками

    При использовании смекалки для создания регулятора оборотов своими руками, можно использовать выпаянные платы регулятора швейной машины или пылесоса. Кроме того, составляющие для регулятора недорогие по цене, при возможности их можно легко купить. Стоит отметить, что в устройстве редуктор необходим для поддержки определенного количества оборотов и скорости. Если скорости повышенные, то причина скорее всего в статоре. Статор требует ремонта. Починка статора возможна в домашних условиях.

    Работа коллекторного двигателя обеспечивается любым видом электрического напряжения. При изменении мощности напряжения нужно уменьшить или увеличить количество оборотов. Изменить это число помогает как раз таки тиристорный регулятор оборотов.

    Этапы сборки регулятора :

    • Для начала необходимо открутить ручку болгарки, оценить место и придумать, куда расположить элементы схемы (если места нет, то можно сделать устройство в отдельной коробке);
    • Резистор можно сделать из алюминия;
    • При условии несильного нагревания симистора радиатор достаточен небольшого размера;
    • Далее происходит припаивание конструкции.

    В заключение идет проклейка эпоксидной смолой для закрепления. Самодельное устройство может работать годами. Бывают случаи, что устройство после включения разгоняется на повышенных скоростях – это значит, обмотка статора замкнулась. В данном случае произошло витковое замыкание. Статор требует ремонта, чаще всего требуется его перемотка.

    Какие бывают характерные неисправности: разрывается или сгорает обмотка, возникает короткое замыкание, пробивается изолирующая поверхность.

    Делаем регулятор частоты вращения

    Электрическая болгарка невозможна без регулятора частоты вращения, чтобы существовала возможность понизить число оборотов.

    Схема регулятора с точки зрения физики выглядит так :

    • Резистор – R1;
    • Подстроечный резистор – VR1;
    • Конденсатор – C10;
    • Симистор – DIAC;
    • Симистор – TRIAC.

    Электронный регулятор бывает не только встроенным, но и выносным для удобства. В болгарках фирмы Bosch электроника устанавливает число оборотов от почти 3 тысяч до 11,5 тысяч. Нет нагрузки на мощности счетчика, учитываются все показатели. Снизить количество оборотов и повысить их не затруднит инструмент. Регулируемые частоты вращения просто необходимы при любой работе болгаркой.

    Делаем плавный пуск для электроинструмента своими руками (видео)

    Только на первый взгляд, кажется, что болгарка может никогда не понадобиться в жизни, что ситуаций, когда она пригодится и уж тем более когда её придётся чинить, не возникнет. Конечно, можно обратиться к профессионалам, а можно самим определить неисправность и постараться её устранить.

    Кому хочется напрягаться, тратить свои деньги и время на переоборудование устройств и механизмов, которые и так прекрасно работают? Как показывает практика – многим. Хоть и не каждый в жизни сталкивается с промышленным оборудованием, оснащённым мощными электродвигателями, но, постоянно встречается пусть с не столь прожорливыми и мощными, электромоторами в быту. Ну а лифтом, наверняка, пользовался каждый.

    Электродвигатели и нагрузки - проблема?

    Дело в том, что фактически любые электродвигатели, в момент пуска или остановки ротора, испытывают огромные нагрузки. Чем мощнее двигатель и оборудование, приводимое им в движение, тем грандиозней затраты на его запуск.

    Наверное, самая значительная нагрузка, приходящаяся на двигатель в момент пуска, это многократное, хоть и кратковременное, превышение номинального рабочего тока агрегата. Уже через несколько секунд работы, когда электромотор выйдет на свои штатные обороты, ток, потребляемый им, тоже вернётся к нормальному уровню. Для обеспечения необходимого электроснабжения приходиться наращивать мощность электрооборудования и токопроводящих магистралей , что приводит к их подорожанию.

    При запуске мощного электродвигателя, из-за его большого потребления, происходит «просадка» напряжения питания, которая может привести к сбоям или выходу из строя оборудования, запитанного с ним от одной линии. Ко всему прочему, снижается срок службы аппаратуры электроснабжения.

    При возникновении нештатных ситуаций, повлёкших перегорание двигателя или его сильный перегрев, свойства трансформаторной стали могут измениться настолько, что после ремонта двигатель потеряет до тридцати процентов мощности. При таких обстоятельствах, к дальнейшей эксплуатации он уже непригоден и требует замены, что тоже недешево.

    Для чего нужен плавный пуск?

    Казалось бы, все правильно, да и оборудование на это рассчитано. Вот только всегда есть «но». В нашем случае их несколько:

    • в момент запуска электродвигателя, ток питания может превышать номинальный в четыре с половиной-пять раз, что приводит к значительному нагреву обмоток, а это не очень хорошо;
    • старт двигателя прямым включением приводит к рывкам, которые в первую очередь влияют на плотность тех же обмоток, увеличивая трение проводников во время работы, ускоряет разрушение их изоляции и, со временем, может привести к межвитковому замыканию;
    • вышеупомянутые рывки и вибрация передаются на весь приводимый в движение агрегат. Это уже совсем нездорово, потому что может привести к повреждению его движущихся элементов : систем зубчатых передач, приводных ремней, конвейерных лент или просто представьте себя едущим в дёргающемся лифте. В случае насосов и вентиляторов - это риск деформации и разрушения турбин и лопастей;
    • не стоит также забывать об изделиях, возможно находящихся на производственной линии. Они могут упасть, рассыпаться или разбиться из-за такого рывка;
    • ну, и наверно, последний из моментов, заслуживающих внимание - стоимость эксплуатации такого оборудования. Речь идёт не только о дорогостоящих ремонтах, связанных с частыми критическими нагрузками, но и об ощутимом количестве не эффективно израсходованной электроэнергии.

    Казалось бы, все вышеперечисленные сложности эксплуатации присущи лишь мощному и громоздкому промышленному оборудованию, однако, это не так. Все это может стать головной болью любого среднестатистического обывателя. В первую очередь это касается электроинструмента.

    Специфика применения таких агрегатов, как электролобзики, дрели, болгарки и им подобных, предполагают многократные циклы запуска и остановки, в течение относительно небольшого промежутка времени. Такой режим эксплуатации, в той же мере, влияет на их долговечность и энергопотребление, как и у их промышленных собратьев. При всем этом не стоит забывать, что системы плавного запуска не могут регулировать рабочие обороты мотора или реверсировать их направление. Также невозможно увеличить пусковой момент или снизить ток ниже, чем требуется для начала вращения ротора электродвигателя.

    Видео: Плавный пуск, регулировка и защита колектор. двигателя

    Варианты систем плавного пуска электродвигателей

    Система «звезда-треугольник»

    Одна из наиболее широко применяемых систем запуска промышленных асинхронных двигателей. Основным её преимуществом является простота. Двигатель запускается при коммутации обмоток системы «звезда», после чего, при наборе штатных оборотов, автоматически переключается на коммутацию «треугольник». Такой вариант старта позволяет добиться тока почти на треть ниже , чем при прямом запуске электромотора.

    Однако, этот способ не подойдёт для механизмов с небольшой инерцией вращения. К таким, к примеру, относятся вентиляторы и небольшие насосы, из-за малых размеров и массы их турбин. В момент перехода с конфигурации «звезда» на «треугольник», они резко снизят обороты или вовсе остановятся. В результате после переключения, электродвигатель по сути, запускается заново. То есть в конечном счёте вы не добьётесь не только экономии ресурса двигателя, но и, вероятнее всего, получите перерасход электроэнергии.

    Видео: Подключение трёхфазного асинхронного электродвигателя звездой или треугольником

    Электронная система плавного пуска электродвигателя

    Плавный пуск двигателя может быть произведён с помощью симисторов, включённых в цепи управления. Существует три схемы такого включения: однофазные, двухфазные и трехфазные. Каждая из них отличается своими функциональными возможностями и конечной стоимостью соответственно.

    С помощью таких схем, обычно, удаётся снизить пусковой ток до двух–трёх номинальных. Кроме этого, удаётся снизить существенный нагрев, присущий вышеупомянутой системе «звезда-треугольник», что способствует увеличению срока службы электродвигателей. Благодаря тому, что управление запуска двигателя происходит за счёт снижения напряжения, разгон ротора осуществляется плавно, а не скачкообразно, как у других схем.

    В целом, на системы плавного пуска двигателя возлагаются несколько ключевых задач:

    • основная – понижение пускового тока до трёх–четырёх номинальных;
    • снижение напряжения питания двигателя, при наличии соответствующих мощностей и проводки;
    • улучшение параметров пуска и торможения;
    • аварийная защита сети от перегрузок по току.

    Однофазная схема пуска

    Данная схема предназначена для запуска электродвигателей мощностью не более одиннадцати киловатт. Применяют такой вариант в том случае, если требуется смягчить удар при запуске, а торможение, плавный пуск и понижение пускового тока не имеют значения. В первую очередь из-за невозможности организации последних, в такой схеме. Но по причине удешевления производства полупроводников, в том числе и симисторов, они сняты с производства и редко встречаются;

    Двухфазная схема пуска

    Такая схема предназначена для регулирования и пуска двигателей мощностью до двухсот пятидесяти ватт. Такие системы плавного пуска иногда комплектуют обходным контактором для удешевления прибора, однако, это не решает проблемы несимметричности питания фаз, что может привести к перегреву;

    Трехфазная схема пуска

    Эта схема является наиболее надёжной и универсальной системой плавного пуска электродвигателей. Максимальная мощность, управляемых таким устройством двигателей, ограничена исключительно максимальной температурной и электрической выносливостью применённых симисторов. Его универсальность позволяет реализовать массу функций , таких как: динамический тормоз, подхват обратного хода или балансировку ограничения магнитного поля и тока.

    Важным элементом последней, из упомянутых схем, является обходной контактор, о котором говорилось раньше. Он позволяет обеспечить правильный тепловой режим системы плавного пуска электродвигателя , после выхода двигателя на штатные рабочие обороты, предотвращая его перегрев.

    Существующие на сегодняшний день устройства плавного пуска электродвигателей, помимо приведённых выше свойств, рассчитаны на их совместную работу с различными контроллерами и системами автоматизации. Имеют возможность включения по команде оператора или глобальной системы управления. При таких обстоятельствах, в момент включения нагрузок, возможно появление помех, могущих привести к сбоям в работе автоматики, а следовательно, стоит озаботиться системами защиты. Использование схем плавного пуска, способно значительно уменьшить их влияние.

    Плавный пуск своими руками

    Большинство перечисленных выше систем фактически неприменимы в бытовых условиях. В первую очередь по той причине, что дома мы крайне редко используем трехфазные асинхронные двигатели. Зато коллекторных однофазных моторов - хоть отбавляй.

    Существует немало схем устройства плавного запуска двигателей. Выбор конкретной зависит исключительно от вас, но в принципе, имея определённые знания радиотехники, умелые руки и желание, вполне можно собрать приличный самодельный пускатель , который продлит жизнь вашего электроинструмента и бытовой техники на долгие годы.

    Загрузка...
    Top