Cl химия. Знаешь как

ОПРЕДЕЛЕНИЕ

Хлор находится в третьем периоде VII группе главной (А) подгруппе Периодической таблицы.

Относится к элементам p-семейства. Неметалл. Элементы-неметаллы, входящие в эту группу, носят общее название галогены. Обозначение - Cl. Порядковый номер - 17. Относительная атомная масса - 35,453 а.е.м.

Электронное строение атома хлора

Атом хлора состоит из положительно заряженного ядра (+17), состоящего из 17 протонов и 18 нейтронов, вокруг которого по 3-м орбитам движутся 17 электронов.

Рис.1. Схематическое строение атома хлора.

Распределение электронов по орбиталям выглядит следующим образом:

17Cl) 2) 8) 7 ;

1s 2 2s 2 2p 6 3s 2 3p 5 .

На внешнем энергетическом уровне атома хлора находится семь электронов, все они считаются валентными. Энергетическая диаграмма основного состояния принимает следующий вид:

Наличие одного неспаренного электрона свидетельствует о том, что хлор способен проявлять степень окисления +1. Также возможно несколько возбужденных состояний из-за наличия вакантной 3d -орбитали. Сначала распариваются электроны 3p -подуровня и занимают свободные d -орбитали, а после - электроны 3s -подуровня:

Этим объясняется наличие у хлора ещё трех степеней окисления: +3, +5 и +7.

Примеры решения задач

ПРИМЕР 1

Задание Даны два элемента с зарядами ядер Z=17 и Z=18. Простое вещество, образованное первым элементом, — ядовитый газ с резким запахом, а вторым - не ядовитый, лишенный запаха, не поддерживающий дыхания газ. Напишите электронные формулы атомов обоих элементов. Какой из них образует ядовитый газ?
Решение Электронные формулы заданных элементов будут записываться следующим образом:

17 Z 1s 2 2s 2 2p 6 3s 2 3p 5 ;

18 Z 1s 2 2s 2 2p 6 3s 2 3p 6 .

Заряд ядра атома химического элемента равен его порядковому номеру в Периодической таблице. Следовательно, это хлор и аргон. Два атома хлора образуют молекулу простого вещества - Cl 2 , которое представляет собой ядовитый газ с резким запахом

Ответ Хлор и аргон.

Введение……………………………………………………………………………………………3

1. Символ элемента, положение его в периодической системе элементов Д.И. Менделеев. Атомная масса…………………………………………………………………………………….4

2. Строение ядра атома хлора. Возможные изотопы. Примеры………………………….5

3. Электронная формула атома: распределение электронов по уровням, подуровням, ячейкам Хунда. Возбуждённое состояние атома хлора………………………………………………….6

4. Валентность атома алюминия в стационарном и возбуждённом состояниях. Возможные степени окисления атома хлора. Окислительно – восстановительные свойства. Примеры схем перемещения электронов………………………………………………………………………….8

5. Эквиваленты хлора и его соединений. Примеры расчётов……………………………..11

6. Химические свойства хлора и его соединений. Примеры реакций……………………12

7. Виды концентраций……………………………………………………………………….15

8. Электролитическая диссоциация. Схема процесса диссоциации гидроксида. Константа диссоциации………………………………………………………………………………………17

9. Расчёт pH, pOH 0.01м раствора гидроксида или соли элемента………………………21

10. Гидролиз…………………………………………………………………………………..23

11. Качественный анализ хлора………………………………………………………………24

12. Методы количественного определения атома хлора или его соединений……………27

12.1. Гравиметрический метод анализа атома хлора………………………………………...27

13. Заключение……………………………………………………………………………….29

Список литературы………………………………………………………………………………32

Введение

Соединение с водородом - газообразный хлороводород - было впервые получено Джозефом Пристлив 1772 г. Хлор был получен в1774 г.шведским химикомКарлом Вильгельмом Шееле, описавшим его выделение при взаимодействиипиролюзитассоляной кислотойв своём трактате о пиролюзите:

Шееле отметил запах хлора, схожий с запахом царской водки, его способность взаимодействовать сзолотомикиноварью, а также его отбеливающие свойства. Однако Шееле, в соответствии с господствовавшей в химиитого времени теориифлогистона, предположил, что хлор представляет собой дефлогистированную муриевую (соляную) кислоту.БертоллеиЛавуазьев рамках кислородной теории кислот обосновали, что новое вещество должно быть оксидом гипотетическогоэлементамурия . Однако попытки его выделения оставались безуспешными вплоть до работ Дэви, которомуэлектролизомудалось разложитьповаренную сольна натрий хлор, доказав элементарную природу последнего.

1. Символ элемента, положение его в периодической системе элементов д.И. Менделеев. Атомная масса

Хлор (от греч. χλωρός - «зелёный») - элемент 17-й группы периодической таблицы химических элементов (по устаревшей классификации - элемент главной подгруппы VII группы), третьего периода, с атомным номером 17. Обозначается символом Cl (лат. Chlorum). Химически активный неметалл. Входит в группу галогенов (первоначально название «галоген» использовал немецкий химик Швейгер для хлора - дословно «галоген» переводится как солерод - но оно не прижилось и впоследствии стало общим для 17-й (VIIA) группы элементов, в которую входит и хлор).

Простое вещество хлор (CAS-номер: 7782-50-5) при нормальных условиях - ядовитый газ желтовато-зелёного цвета, тяжелее воздуха, с резким запахом. Молекула хлора двухатомная (формула Cl2).

Атомная масса

(молярная масса)

[комм 1] а. е. м. (г/моль)

2. Строение ядра атома хлора. Возможные изотопы. Примеры

В природе встречаются 2 стабильных изотопа хлора: с массовым числом 35 и 37. Доли их содержания соответственно равны 75,78 % и 24,22%.

Изотоп

Относительная масса, а.е.м.

Период полураспада

Тип распада

Ядерный спин

Стабилен

β-распадв 36 Ar

Стабилен

37,2 минуты

β-распад в 38 Ar

55,6 минуты

β-распад в 39 Ar

1,38 минуты

β-распад в 40 Ar

3. Электронная формула атома: распределение электронов по уровням, подуровням, ячейкам Хунда. Возбуждённое состояние атома хлора

Хлор в периодической системе химических элементов находится в 3 периоде, VII группе, главной подгуппе (подгуппа галогенов) .

Заряд ядра атома Z = + = + 17

Количество протонов N(p+) = 17

Количество электронов N(e-) = 17

В возбужденном сотоянии:

1) 3s2 3p5 3d0 + hn --> 3s2 3p4 3d1

3 неспаренных электрона (2 электрона на 3р-подуровне и 1 электрон на 3d-подуровне) , следовательно валентность равна 3

Пример соединения: HClO2, Cl2O3

2) 3s2 3p4 3d1 + hn --> 3s2 3p3 3d2

5 неспаренных электронов (3 электрона на 3р-подуровне и 2 электрона на 3d-подуровне) , следовательно валентность равна 5

Пример соединения: HClO3, Cl2O5

3) 3s2 3p3 3d2 + hn --> 3s1 3p3 3d3

7 неспаренных электронов (1 электрон на 3s-подуровне, 3 электрона на 3р-подуровне и 3 электрона на 3d-подуровне), следовательно валентность равна 5

4. Валентность атома алюминия в стационарном и возбуждённом состояниях. Возможные степени окисления атома хлора. Окислительно – восстановительные свойства. Примеры схем перемещения электронов

Валентные электроны: 3s2 3p5

В невозбужденном состоянии у атома хлора на 3 энергетическом уровне находится один неспаренный электрон, следовательно, невозбужденный атом хлора может проявлять валентность 1. Валентность 1 проявляется в следующих соединениях:

Газообразный хлор Cl2 (или Сl-Cl)

Хлорид натрия NaCl (или Na+ Cl-)

Хлороводород HCl (или H-Cl)

Хлорноватистая кислота HOCl (или H-O-Cl)

Окислительно – восстановительные свойства.

HCl - степень окисления хлора -1

HClO3 - степень окисления хлора +5

HClO4 - степень окисления хлора +7

Промежуточная степень окисления говорит о том, что данный элемент может проявлять как восстановительные так и окислительные свойства, это - HClO3

Окислительные свойства проявляют элементы, у которых максимальная степень окисления (она равна номеру группы, в которой находится элемент). Значит, HClO4 - окислитель.

Восстановительными свойствами обладает элемент с наменьшей степенью окисления, т.е. HCl - восстановитель.

Хлор является сильным окислителем. Различные соединения хлора могут быть использованы в качестве окислителей. Это хлор С12), хлорноватистая кислота НСЮ, соли хлорноватистой кислоты - гипохлорит натрия NaCIO или гипохлорит кальция Са(СЮ)2 и оксид хлора СЮ2.

Хлорирование применяют для удаления из сточных вод фенолов, крезолов, цианидов, сероводорода. Для борьбы с биологическими обрастаниями сооружений его используют в качестве биоцида. Применяют хлор и для обеззараживания воды.

Хлор поступает на производство в жидком виде с содержанием не менее 99,5 %. Хлор является высокотоксичным газом, он обладает способностью накапливаться и концентрироваться в небольших углублениях. С ним достаточно трудно работать. При попадании в воду происходит гидролиз хлора с образованием соляной кислоты. С некоторыми органическими веществами, которые присутствуют в растворе, С12 может вступать в реакции хлорирования. В результате образуются вторичные хлорорганические продукты, которые обладают высокой степенью токсичности. Поэтому применение хлора стремятся ограничить.

Хлорноватистая кислота НСЮ обладает такой же окислительной способностью, как и хлор. Однако ее окислительные свойства проявляются только в кислой среде. Кроме того хлорноватистая кислота является нестабильным продуктом - со временем и на свету она разлагается.

Широкое применение получили соли хлорноватистой кислоты. Гипохлорит кальция Са(СЮ)2 выпускается трех сортов с концентрацией активного хлора от 32 до 35 %. На практике используют также двухосновную соль Са(СЮ)2- 2Са(ОН)г 2Н20.

Наиболее устойчива соль гипохлорита натрия NaOCl * 5Н20, которую получают при химическом взаимодействии газообразного хлора с раствором щелочи или при электролизе поваренной соли в ванне без диафрагмы.

Оксид хлораСO2 - газ зеленовато-желтого цвета, хорошо растворим в воде, сильный окислитель. Его получают взаимодействием хлорита NaC102 с хлором, соляной кислотой или озоном. При взаимодействии оксида хлора с водой не ротекают реакции хлорирования, что исключает образование хлорорганических веществ. В последнее время проводятся широкие разработки по выяснению условий замены хлора на оксид хлора в качестве окислителя. На ряде российских заводов внедрены передовые технологии с использованием СO2.

Галогены (от греч. halos - соль и genes - образующий) - элементы главной подгруппыVIIгруппы периодической системы: фтор, хлор, бром, йод, астат. В свободном состоянии галогены образуют вещества, состоящие из двухатомных молекул F 2 , Cl 2 , Br 2 , I 2 . НАХОЖДЕНИЕ В ПРИРОДЕ Галогены в природе находятся только в виде соединений. Фтор встречается исключительно в виде солей, рассеянных по различным горным породам. Общее содержание фтора в земной коре составляет 0,02% атомов. Практическое значение имеют минералы фтора: CaF 2 - плавиковый шпат, Na 2 AlF 6 - криолит, Ca 5 F(PO 4) 3 - фторапатит. Важнейшим природным соединением хлора является хлорид натрия (галит), который служит основным сырьем для получения других соединений хлора. Главная масса хлорида натрия находится в воде морей и океанов. Воды многих озер также содержат значительное количество NaCl – таковы, например озера Эльтон и Баскунчак. Встречаются другие соединения хлора, например, KСl - сильвин, MgCl 2 *KCl*6HO - карналлит, KCl*NaCl - сильвинит. Бром встречается в природе в виде солей натрия и калия вместе с солями хлора, а также в воде соленых озер и морей. Бромиды металлов содержатся в морской воде. В подземных буровых водах, имеющих промышленное значение, содержание брома составляет от 170 до700мг/л. Общее содержание брома в земной коре 3*10-5% атомов. Соединения йода имеются в морской воде, но в столь малых количествах, что непосредственное выделение их из воды очень затруднительно. Однако существуют некоторые водоросли, которые накапливают йод в своих тканях, например ламинарии. Зола этих водорослей служит сырьем для получения йода. Значительное количество йода(от 10 до 50мг/л.) содержатся в подземных буровых водах. Содержание йода в земной коре 4*10-6 % атомов. Существуют незначительные залежи солей йода - KIO 3 и KIO 4 - В Чили и Боливии. Общая масса астата на земном шаре по оценкам не превышает 30 г. Таблица. Электронное строение и некоторые свойства атомов и молекул галогенов
Символ элемента F Cl Br I At
Порядковый номер
Строение внешнего электронного слоя 2s 2 2p 5 3s 2 3p 5 4s 2 4p 5 5s 2 5p 5 6s 2 6p 5
Относительная электро отрицательность (ЭО) 4,0 3,0 2,8 2,5 ~2,2
Радиус атома, нм 0,064 0,099 0,114 0,133
Степени окисления -1 -1, +1, +3, +5, +7
Агрегатное состояние Бледно-зел. газ Зел-желт. газ Бурая жидкость Темн-фиол. кристаллы Черные кристаллы
t°пл.(°С) -219 -101 -8
t°кип.(°С) -183 -34
ρ (г / см 3) 1,51 1,57 3,14 4,93
Растворимость в воде (г / 100 г воды) реагирует с водой 2,5: 1 по объему 3,5 0,02

1) Общая электронная конфигурация внешнего энергетического уровня - nS 2 nP 5 .

2) С возрастанием порядкового номера элементов увеличиваются радиусы атомов, уменьшается электроотрицательность, ослабевают неметаллические свойства (увеличиваются металлические свойства); галогены - сильные окислители, окислительная способность элементов уменьшается с увеличением атомной массы.

3) С увеличением атомной массы окраска становится более темной, возрастают температуры плавления и кипения, а также плотность.

Рассмотрены физические свойства хлора: плотность хлора, его теплопроводность, удельная теплоемкость и динамическая вязкость при различных температурах. Физические свойства Cl 2 представлены в виде таблиц для жидкого, твердого и газообразного состояния этого галогена.

Основные физические свойства хлора

Хлор входит в VII группу третьего периода периодической системы элементов под номером 17. Он относится к подгруппе галогенов, имеет относительные атомную и молекулярные массы 35,453 и 70,906, соответственно. При температурах выше -30°С хлор представляет собой зеленовато-желтый газ с характерным резким раздражающим запахом. Он легко сжижается под обычным давлением (1,013·10 5 Па), будучи охлажден до -34°С, и образует прозрачную жидкость янтарного цвета, затвердевающую при температуре -101°С.

Из-за своей высокой химической активности свободный хлор не встречается в природе, а существует только в форме соединений. Он содержится главным образом в минерале галите (), также входит в состав таких минералов, как: сильвин (KCl), карналлит (KCl·MgCl 2 ·6H 2 O) и сильвинит (KCl·NaCl). Содержание хлора в земной коре приближается к 0,02% от общего числа атомов земной коры, где он находится в виде двух изотопов 35 Cl и 37 Cl в процентном соотношении 75,77% 35 Cl и 24,23% 37 Cl.

Физические свойства хлора — таблица основных показателей
Свойство Значение
Температура плавления, °С -100,5
Температура кипения, °С -30,04
Критическая температура, °С 144
Критическое давление, Па 77,1·10 5
Критическая плотность, кг/м 3 573
Плотность газа (при 0°С и 1,013·10 5 Па), кг/м 3 3,214
Плотность насыщенного пара (при 0°С и 3,664·10 5 Па), кг/м 3 12,08
Плотность жидкого хлора (при 0°С и 3,664·10 5 Па), кг/м 3 1468
Плотность жидкого хлора (при 15,6°С и 6,08·10 5 Па), кг/м 3 1422
Плотность твердого хлора (при -102°С), кг/м 3 1900
Относительная плотность по воздуху газа (при 0°С и 1,013·10 5 Па) 2,482
Относительная плотность по воздуху насыщенного пара (при 0°С и 3,664·10 5 Па) 9,337
Относительная плотность жидкого хлора при 0°С (по воде при 4°С) 1,468
Удельный объем газа (при 0°С и 1,013·10 5 Па), м 3 /кг 0,3116
Удельный объем насыщенного пара (при 0°С и 3,664·10 5 Па), м 3 /кг 0,0828
Удельный объем жидкого хлора (при 0°С и 3,664·10 5 Па), м 3 /кг 0,00068
Давление паров хлора при 0°С, Па 3,664·10 5
Динамическая вязкость газа при 20°С, 10 -3 Па·с 0,013
Динамическая вязкость жидкого хлора при 20°С, 10 -3 Па·с 0,345
Теплота плавления твердого хлора (при температуре плавления), кДж/кг 90,3
Теплота парообразования (при температуре кипения), кДж/кг 288
Теплота сублимации (при температуре плавления), кДж/моль 29,16
Молярная теплоемкость C p газа (при -73…5727°С), Дж/(моль·К) 31,7…40,6
Молярная теплоемкость C p жидкого хлора (при -101…-34°С), Дж/(моль·К) 67,1…65,7
Коэффициент теплопроводности газа при 0°С, Вт/(м·К) 0,008
Коэффициент теплопроводности жидкого хлора при 30°С, Вт/(м·К) 0,62
Энтальпия газа, кДж/кг 1,377
Энтальпия насыщенного пара, кДж/кг 1,306
Энтальпия жидкого хлора, кДж/кг 0,879
Показатель преломления при 14°С 1,367
Удельная электропроводность при -70°С, См/м 10 -18
Сродство к электрону, кДж/моль 357
Энергия ионизации, кДж/моль 1260

Плотность хлора

При нормальных условиях хлор представляет собой тяжелый газ, плотность которого приблизительно в 2,5 раза выше . Плотность газообразного и жидкого хлора при нормальных условиях (при 0°С) равна, соответственно 3,214 и 1468 кг/м 3 . При нагревании жидкого или газообразного хлора его плотность снижается из-за увеличения объема вследствие теплового расширения.

Плотность газообразного хлора

В таблице представлены значения плотности хлора в газообразном состоянии при различных температурах (в интервале от -30 до 140°С) и нормальном атмосферном давлении (1,013·10 5 Па). Плотность хлора меняется с изменением температуры — при нагревании она уменьшается. Например, при 20°С плотность хлора равна 2,985 кг/м 3 , а при повышении температуры этого газа до 100°С, величина плотности снижается до значения 2,328 кг/м 3 .

Плотность газообразного хлора при различных температурах
t, °С ρ, кг/м 3 t, °С ρ, кг/м 3
-30 3,722 60 2,616
-20 3,502 70 2,538
-10 3,347 80 2,464
0 3,214 90 2,394
10 3,095 100 2,328
20 2,985 110 2,266
30 2,884 120 2,207
40 2,789 130 2,15
50 2,7 140 2,097

При росте давления плотность хлора увеличивается . Ниже в таблицах приведена плотность газообразного хлора в интервале температуры от -40 до 140°С и давлении от 26,6·10 5 до 213·10 5 Па. С повышением давления плотность хлора в газообразном состоянии увеличивается пропорционально. Например, увеличение давления хлора с 53,2·10 5 до 106,4·10 5 Па при температуре 10°С приводит к двукратному увеличению плотности этого газа.

Плотность газообразного хлора при различных температурах и давлении от 0,26 до 1 атм.
↓ t, °С | P, кПа → 26,6 53,2 79,8 101,3
-40 0,9819 1,996
-30 0,9402 1,896 2,885 3,722
-20 0,9024 1,815 2,743 3,502
-10 0,8678 1,743 2,629 3,347
0 0,8358 1,678 2,528 3,214
10 0,8061 1,618 2,435 3,095
20 0,7783 1,563 2,35 2,985
30 0,7524 1,509 2,271 2,884
40 0,7282 1,46 2,197 2,789
50 0,7055 1,415 2,127 2,7
60 0,6842 1,371 2,062 2,616
70 0,6641 1,331 2 2,538
80 0,6451 1,292 1,942 2,464
90 0,6272 1,256 1,888 2,394
100 0,6103 1,222 1,836 2,328
110 0,5943 1,19 1,787 2,266
120 0,579 1,159 1,741 2,207
130 0,5646 1,13 1,697 2,15
140 0,5508 1,102 1,655 2,097
Плотность газообразного хлора при различных температурах и давлении от 1,31 до 2,1 атм.
↓ t, °С | P, кПа → 133 160 186 213
-20 4,695 5,768
-10 4,446 5,389 6,366 7,389
0 4,255 5,138 6,036 6,954
10 4,092 4,933 5,783 6,645
20 3,945 4,751 5,565 6,385
30 3,809 4,585 5,367 6,154
40 3,682 4,431 5,184 5,942
50 3,563 4,287 5,014 5,745
60 3,452 4,151 4,855 5,561
70 3,347 4,025 4,705 5,388
80 3,248 3,905 4,564 5,225
90 3,156 3,793 4,432 5,073
100 3,068 3,687 4,307 4,929
110 2,985 3,587 4,189 4,793
120 2,907 3,492 4,078 4,665
130 2,832 3,397 3,972 4,543
140 2,761 3,319 3,87 4,426

Плотность жидкого хлора

Жидкий хлор может существовать в относительно узком температурном диапазоне, границы которого лежат от минус 100,5 до плюс 144°С (то есть от температуры плавления до критической температуры). Выше температуры 144°С хлор не перейдет в жидкое состояние ни при каком давлении. Плотность жидкого хлора в этом температурном интервале изменяется от 1717 до 573 кг/м 3 .

Плотность жидкого хлора при различных температурах
t, °С ρ, кг/м 3 t, °С ρ, кг/м 3
-100 1717 30 1377
-90 1694 40 1344
-80 1673 50 1310
-70 1646 60 1275
-60 1622 70 1240
-50 1598 80 1199
-40 1574 90 1156
-30 1550 100 1109
-20 1524 110 1059
-10 1496 120 998
0 1468 130 920
10 1438 140 750
20 1408 144 573

Удельная теплоемкость хлора

Удельная теплоемкость газообразного хлора C p в размерности кДж/(кг·К) в интервале температуры от 0 до 1200°С и нормальном атмосферном давлении может быть рассчитана по формуле:

где T — абсолютная температура хлора в градусах Кельвина.

Следует отметить, что при нормальных условиях удельная теплоемкость хлора имеет значение 471 Дж/(кг·К) и при нагревании увеличивается. Рост теплоемкости при температурах выше 500°С становится незначительным, и при высоких температурах удельная теплоемкость хлора практически не изменяется.

В таблице приведены результаты расчета удельной теплоемкости хлора по указанной выше формуле (погрешность расчета составляет около 1%).

Удельная теплоемкость газообразного хлора в зависимости от температуры
t, °С C p , Дж/(кг·К) t, °С C p , Дж/(кг·К)
0 471 250 506
10 474 300 508
20 477 350 510
30 480 400 511
40 482 450 512
50 485 500 513
60 487 550 514
70 488 600 514
80 490 650 515
90 492 700 515
100 493 750 515
110 494 800 516
120 496 850 516
130 497 900 516
140 498 950 516
150 499 1000 517
200 503 1100 517

При температуре близкой к абсолютному нулю хлор находится в твердом состоянии и имеет низкую величину удельной теплоемкости (19 Дж/(кг·К)). По мере увеличения температуры твердого Cl 2 его теплоемкость растет и достигает при минус 143°С величины 720 Дж/(кг·К).

Жидкий хлор имеет удельную теплоемкость 918…949 Дж/(кг·К) в интервале от 0 до -90 градусов Цельсия. По данным таблицы видно, что удельная теплоемкость жидкого хлора выше чем газообразного и при увеличении температуры снижается.

Теплопроводность хлора

В таблице представлены значения коэффициентов теплопроводности газообразного хлора при нормальном атмосферном давлении в интервале температуры от -70 до 400°С.

Коэффициент теплопроводности хлора при нормальных условиях составляет 0,0079 Вт/(м·град), что в 3 раза меньше чем у при тех же температуре и давлении. Нагревание хлора приводит к повышению его теплопроводности. Так, при температуре 100°С, значение этого физического свойства хлора увеличивается до 0,0114 Вт/(м·град).

Теплопроводность газообразного хлора
t, °С λ, Вт/(м·град) t, °С λ, Вт/(м·град)
-70 0,0054 50 0,0096
-60 0,0058 60 0,01
-50 0,0062 70 0,0104
-40 0,0065 80 0,0107
-30 0,0068 90 0,0111
-20 0,0072 100 0,0114
-10 0,0076 150 0,0133
0 0,0079 200 0,0149
10 0,0082 250 0,0165
20 0,0086 300 0,018
30 0,009 350 0,0195
40 0,0093 400 0,0207

Вязкость хлора

Коэффициент динамической вязкости газообразного хлора в интервале температуры 20…500°С можно приближенно вычислить по формуле:

где η T — коэффициент динамической вязкости хлора при заданной температуре T, К;
η T 0 — коэффициент динамической вязкости хлора при температуре T 0 =273 К (при н. у.);
С — константа Сюзерленда (для хлора С=351).

При нормальных условиях динамическая вязкость хлора равна 0,0123·10 -3 Па·с. При нагревании такое физическое свойство хлора, как вязкость, принимает более высокие значения.

Жидкий хлор имеет вязкость на порядок выше, чем газообразный. Например, при температуре 20°С динамическая вязкость жидкого хлора имеет величину 0,345·10 -3 Па·с и при росте температуры снижается.

Источники:

  1. Барков С. А. Галогены и подгруппа марганца. Элементы VII группы периодической системы Д. И. Менделеева. Пособие для учащихся. М.: Просвещение, 1976 — 112 с.
  2. Таблицы физических величин. Справочник. Под ред. акад. И. К. Кикоина. М.: Атомиздат, 1976 - 1008 с.
  3. Якименко Л. М., Пасманик М. И. Справочник по производству хлора, каустической соды и основных хлорпродуктов. Изд. 2-е, пер. и др. М.: Химия, 1976 — 440 с.
Хлор
Атомный номер 17
Внешний вид простого вещества Газ жёлто-зеленого цвета с резким запахом. Ядовит.
Свойства атома
Атомная масса
(молярная масса)
35,4527 а.е.м.(г/моль)
Радиус атома 100 пм
Энергия ионизации
(первый электрон)
1254.9(13.01)
кДж/моль (эВ)
Электронная конфигурация 3s 2 3p 5
Химические свойства
Ковалентный радиус 99 пм
Радиус иона (+7e)27 (-1e)181 пм
Электроотрицательность
(по Полингу)
3.16
Электродный потенциал 0
Степени окисления 7, 6, 5, 4, 3, 1, −1
Термодинамические свойства простого вещества
Плотность (при −33.6 °C)1,56
г/см³
Молярная теплоёмкость 21.838 Дж/(K·моль)
Теплопроводность 0.009 Вт /( ·K)
Температура плавления 172.2
Теплота плавления 6.41 кДж /моль
Температура кипения 238.6
Теплота испарения 20.41 кДж/моль
Молярный объём 18.7 см³/моль
Кристаллическая решётка простого вещества
Структура решётки орторомбическая
Параметры решётки a=6,29 b=4,50 c=8,21 Å
Отношение c/a
Температура Дебая n/a K

Хлор (χλωρός — зелёный) — элемент главной подгруппы седьмой группы, третьего периода периодической системы химических элементов, с атомным номером 17.

Элемент ХЛОР обозначается символом Cl (лат. Chlorum ). Химически активный неметалл. Входит в группу галогенов (первоначально название «галоген» использовал немецкий химик Швейгер для хлора [дословно «галоген» переводится как солерод], но оно не прижилось, и впоследствии стало общим для VII группы элементов, в которую входит и хлор).

Простое вещество хлор (CAS-номер: 7782-50-5) при нормальных условиях — ядовитый газ желтовато-зелёного цвета, с резким запахом. Молекула хлора двухатомная (формула Cl 2).

История открытия хлора

Схема атома хлора

Впервые хлор был получен в 1772 г. Шееле, описавшим его выделение при взаимодействии пиролюзита с соляной кислотой в своём трактате о пиролюзите:

4HCl + MnO 2 = Cl 2 + MnCl 2 + 2H 2 O

Шееле отметил запах хлора, схожий с запахом царской водки, его способность взаимодействовать с золотом и киноварью, а также его отбеливающие свойства.

Шееле, в соответствии с господствовавшей в химии того времени теории флогистона, предположил, что хлор представляет собой дефлогистированную соляную кислоту , то есть оксид соляной кислоты. Бертолле и Лавуазье предположили, что хлор является оксидом элемента мурия , однако попытки его выделения оставались безуспешными вплоть до работ Дэви, которому электролизом удалось разложить поваренную соль на натрий и хлор .

Распространение в природе

В природе встречаются два изотопа хлора 35 Cl и 37 Cl. В земной коре хлор самый распространённый галоген. Хлор очень активен — он непосредственно соединяется почти со всеми элементами периодической системы.

В природе он встречается только в виде соединений в составе минералов: галита NaCI, сильвина KCl, сильвинита KCl · NaCl, бишофита MgCl 2 · 6H2O, карналлита KCl · MgCl 2 · 6Н 2 O, каинита KCl · MgSO 4 · 3Н 2 О. Самые большие запасы хлора содержатся в составе солей вод морей и океанов.

На долю хлора приходится 0,025 % от общего числа атомов земной коры, кларковое число хлора — 0,19%, а человеческий организм содержит 0,25 % ионов хлора по массе. В организме человека и животных хлор содержится в основном в межклеточных жидкостях (в том числе в крови) и играет важную роль в регуляции осмотических процессов, а также в процессах, связанных с работой нервных клеток.

Изотопный состав

В природе встречаются 2 стабильных изотопа хлора: с массовым числом 35 и 37. Доли их содержания соответственно равны 75,78 % и 24,22 %.

Изотоп Относительная масса, а.е.м. Период полураспада Тип распада Ядерный спин
35 Cl 34.968852721 Стабилен 3/2
36 Cl 35.9683069 301000 лет β-распад в 36 Ar 0
37 Cl 36.96590262 Стабилен 3/2
38 Cl 37.9680106 37,2 минуты β-распад в 38 Ar 2
39 Cl 38.968009 55,6 минуты β-распад в 39 Ar 3/2
40 Cl 39.97042 1,38 минуты β-распад в 40 Ar 2
41 Cl 40.9707 34 c β-распад в 41 Ar
42 Cl 41.9732 46,8 c β-распад в 42 Ar
43 Cl 42.9742 3,3 c β-распад в 43 Ar

Физические и физико-химические свойства

При нормальных условиях хлор — жёлто-зелёный газ с удушающим запахом. Некоторые его физические свойства представлены в таблице.

Свойство Значение
Температура кипения −34 °C
Температура плавления −101 °C
Температура разложения
(диссоциации на атомы)
~1400°С
Плотность (газ, н.у.) 3,214 г/л
Сродство к электрону атома 3,65 эВ
Первая энергия ионизации 12,97 эВ
Теплоемкость (298 К, газ) 34,94 (Дж/моль·K)
Критическая температура 144 °C
Критическое давление 76 атм
Стандартная энтальпия образования (298 К, газ) 0 (кДж/моль)
Стандартная энтропия образования (298 К, газ) 222,9 (Дж/моль·K)
Энтальпия плавления 6,406 (кДж/моль)
Энтальпия кипения 20,41 (кДж/моль)

При охлаждении хлор превращается в жидкость при температуре около 239 К, а затем ниже 113 К кристаллизуется в орторомбическую решётку с пространственной группой Cmca и параметрами a=6,29 b=4,50 , c=8,21 . Ниже 100 К орторомбическая модификация кристаллического хлора переходит в тетрагональную , имеющую пространственную группу P4 2 /ncm и параметры решётки a=8,56 и c=6,12 .

Растворимость

Степень диссоциации молекулы хлора Cl 2 → 2Cl. При 1000 К равна 2,07*10 -4 %, а при 2500 К 0,909 %.

Порог восприятия запаха в воздухе равен 0,003 (мг/л).

В реестре CAS — номер 7782-50-5.

По электропроводности жидкий хлор занимает место среди самых сильных изоляторов: он проводит ток почти в миллиард раз хуже, чем дистиллированная вода, и в 10 22 раз хуже серебра. Скорость звука в хлоре примерно в полтора раза меньше, чем в воздухе.

Химические свойства

Строение электронной оболочки

На валентном уровне атома хлора содержится 1 неспаренный электрон: 1S² 2S² 2p 6 3S² 3p 5 , поэтому валентность равная 1 для атома хлора очень стабильна. За счёт присутствия в атоме хлора незанятой орбитали d-подуровня, атом хлора может проявлять и другие валентности. Схема образования возбуждённых состояний атома:

Также известны соединения хлора, в которых атом хлора формально проявляет валентность 4 и 6, например ClO 2 и Cl 2 O 6 . Однако, эти соединения являются радикалами , то есть у них есть один неспаренный электрон.

Взаимодействие с металлами

Хлор непосредственно реагирует почти со всеми металлами (с некоторыми только в присутствии влаги или при нагревании):

Cl 2 + 2Na → 2NaCl 3Cl 2 + 2Sb → 2SbCl 3 3Cl 2 + 2Fe → 2FeCl 3

Взаимодействие с неметаллами

На свету или при нагревании активно реагирует (иногда со взрывом) с водородом по радикальному механизму. Смеси хлора с водородом, содержащие от 5,8 до 88,3 % водорода, взрываются при облучении с образованием хлороводорода . Смесь хлора с водородом в небольших концентрациях горит бесцветным или желто-зелёным пламенем. Максимальная температура водородно-хлорного пламени 2200 °C.:

Cl 2 + H 2 → 2HCl 5Cl 2 + 2P → 2PCl 5 2S + Cl 2 → S 2 Cl 2 Cl 2 + 3F 2 (изб.) → 2ClF 3

Другие свойства

Cl 2 + CO → COCl 2

При растворении в воде или щелочах, хлор дисмутирует , образуя хлорноватистую (а при нагревании хлорную) и соляную кислоты , либо их соли:

Cl 2 + H 2 O → HCl + HClO 3Cl 2 + 6NaOH → 5NaCl + NaClO 3 + 3H 2 O Cl 2 + Ca(OH) 2 → CaCl(OCl) + H 2 O 4NH 3 + 3Cl 2 → NCl 3 + 3NH 4 Cl

Окислительные свойства хлора

Cl 2 + H 2 S → 2HCl + S

Реакции с органическими веществами

CH 3 -CH 3 + Cl 2 → C 2 H 6-x Cl x + HCl

Присоединяется к ненасыщенным соединениям по кратным связям:

CH 2 =CH 2 + Cl 2 → Cl-CH 2 -CH 2 -Cl

Ароматические соединения замещают атом водорода на хлор в присутствии катализаторов (например, AlCl 3 или FeCl 3):

C 6 H 6 + Cl 2 → C 6 H 5 Cl + HCl

Способы получения

Промышленные методы

Первоначально промышленный способ получения хлора основывался на методе Шееле, то есть реакции пиролюзита с соляной кислотой:

MnO 2 + 4HCl → MnCl 2 + Cl 2 + 2H 2 O

В 1867 году Диконом был разработан метод получения хлора каталитическим окислением хлороводорода кислородом воздуха. Процесс Дикона в настоящее время используется при рекуперации хлора из хлороводорода, являющегося побочным продуктом при промышленном хлорировании органических соединений.

4HCl + O 2 → 2H 2 O + 2Cl 2

Сегодня хлор в промышленных масштабах получают вместе с гидроксидом натрия и водородом путём электролиза раствора поваренной соли:

2NaCl + 2H 2 О → H 2 + Cl 2 + 2NaOH Анод: 2Cl - — 2е - → Cl 2 0 Катод: 2H 2 O + 2e - → H 2 + 2OH -

Так как параллельно электролизу хлорида натрия проходит процесс электролиз воды, то суммарное уравнение можно выразить следующим образом:

1,80 NaCl + 0,50 H 2 O → 1,00 Cl 2 + 1,10 NaOH + 0,03 H 2

Применяется три варианта электрохимического метода получения хлора. Два из них электролиз с твердым катодом: диафрагменный и мембранный методы, третий — электролиз с жидким ртутным катодом (ртутный метод производства). В ряду электрохимических методов производства самым легким и удобным способом является электролиз с ртутным катодом, но этот метод наносит значительный вред окружающей среде в результате испарения и утечек металлической ртути.

Диафрагменный метод с твердым катодом

Полость электролизера разделена пористой асбестовой перегородкой — диафрагмой — на катодное и анодное пространство, где соответственно размещены катод и анод электролизёра. Поэтому такой электролизёр часто называют диафрагменным, а метод получения — диафрагменным электролизом. В анодное пространство диафрагменного электролизера непрерывно поступает поток насыщенного анолита (раствора NaCl). В результате электрохимического процесса на аноде за счёт разложения галита выделяется хлор, а на катоде за счёт разложения воды — водород. При этом прикатодная зона обогащается гидроксидом натрия.

Мембранный метод с твердым катодом

Мембранный метод по сути, аналогичен диафрагменному, но анодное и катодное пространства разделены катионообменной полимерной мембраной. Мембранный метод производства эффективнее, чем диафрагменный, но сложнее в применении.

Ртутный метод с жидким катодом

Процесс проводят в электролитической ванне, которая состоит из электролизера, разлагателя и ртутного насоса, объединённых между собой коммуникациями. В электролитической ванне под действием ртутного насоса циркулирует ртуть, проходя через электролизёр и разлагатель. Катодом электролизера служит поток ртути. Аноды — графитовые или малоизнашивающиеся. Вместе с ртутью через электролизер непрерывно течет поток анолита — раствора хлорида натрия. В результате электрохимического разложения хлорида на аноде образуются молекулы хлора, а на катоде выделившийся натрий растворяется в ртути образуя амальгаму.

Лабораторные методы

В лабораториях для получения хлора обычно используют процессы, основанные на окислении хлороводорода сильными окислителями (например, оксидом марганца (IV), перманганатом калия, дихроматом калия):

2KMnO 4 + 16HCl → 2KCl + 2MnCl 2 + 5Cl 2 +8H 2 O K 2 Cr 2 O 7 + 14HCl → 3Cl 2 + 2KCl + 2CrCl 3 + 7H 2 O

Хранение хлора

Производимый хлор хранится в специальных «танках» или закачивается в стальные баллоны высокого давления. Баллоны с жидким хлором под давлением имеют специальную окраску — болотный цвет. Следует отметить что при длительной эксплуатации баллонов с хлором в них накапливается чрезвычайно взрывчатый треххлористый азот, и поэтому время от времени баллоны с хлором должны проходить плановую промывку и очистку от хлорида азота.

Стандарты качества хлора

Согласно ГОСТ 6718-93 «Хлор жидкий. Технические условия» производятся следующие сорта хлора

Применение

Хлор применяют во многих отраслях промышленности, науки и бытовых нужд:

Основным компонентом отбеливателей является хлорная вода

  • В производстве поливинилхлорида, пластикатов, синтетического каучука, из которых изготавливают: изоляцию для проводов, оконный профиль, упаковочные материалы , одежду и обувь, линолеум и грампластинки, лаки, аппаратуру и пенопласты , игрушки, детали приборов, строительные материалы. Поливинилхлорид производят полимеризацией винилхлорида, который сегодня чаще всего получают из этилена сбалансированным по хлору методом через промежуточный 1,2-дихлорэтан.
  • Отбеливающие свойства хлора известны с давних времен, хотя не сам хлор «отбеливает», а атомарный кислород, который образуется при распаде хлорноватистой кислоты: Cl 2 + H 2 O → HCl + HClO → 2HCl + O.. Этот способ отбеливания тканей, бумаги, картона используется уже несколько веков.
  • Производство хлорорганических инсектицидов — веществ, убивающих вредных для посевов насекомых, но безопасные для растений. На получение средств защиты растений расходуется значительная часть производимого хлора. Один из самых важных инсектицидов — гексахлорциклогексан (часто называемый гексахлораном). Это вещество впервые синтезировано ещё в 1825 г. Фарадеем, но практическое применение нашло только через 100 с лишним лет — в 30-х годах нашего столетия.
  • Использовался как боевое отравляющее вещество , а так же для производства других боевых отравляющих веществ: водопроводной воды, но альтернативы дезинфицирующему последействию соединений хлора предложить не могут. Материалы, из которых изготовлены водопроводные трубы, по разному взаимодействуют с хлорированной водопроводной водой. Свободный хлор в водопроводной воде существенно сокращает срок службы трубопроводов на основе полиолефинов : полиэтиленовых труб различного вида, в том числе сшитого полиэтилена, большие известного как ПЕКС (PEX, PE-X). В США для контроля допуска трубопроводов из полимерных материалов к использованию в водопроводах с хлорированной водой вынуждены были принять 3 стандарта: ASTM F2023 применительно к трубам из сшитого полиэтилена (PEX) и горячей хлорированной воде, ASTM F2263 применительно к полиэтиленовым трубам всем и хлорированной воде и ASTM F2330 применительно к многослойным (металлополимерным) трубам и горячей хлорированной воде. Положительную реакцию в части долговечности при взаимодействии с хлорированной водой демонстрируют медные сжигании (кишечнике . Всасывание и экскреция хлора тесно связаны с ионами натрия и бикарбонатами, в меньшей степени с минералокортикоидами и активностью Na + /K + — АТФ-азы. В клетках аккумулируется 10-15 % всего хлора, из этого количества от 1/3 до 1/2 — в эритроцитах . Около 85 % хлора находятся во внеклеточном пространстве. Хлор выводится из организма в основном с мочой (90-95 %), калом (4-8 %) и через кожу (до 2 %). Экскреция хлора связана с ионами натрия и калия, и реципрокно с HCO 3 - (кислотно-щелочной баланс).

    Человек потребляет 5-10 г NaCl в сутки. Минимальная потребность человека в хлоре составляет около 800 мг в сутки. Младенец получает необходимое количество хлора через молоко матери, в котором содержится 11 ммоль/л хлора. NaCl необходим для выработки в желудке соляной кислоты, которая способствует пищеварению и уничтожению болезнетворных бактерий. В настоящее время участие хлора в возникновении отдельных заболеваний у человека изучено недостаточно хорошо, главным образом из-за малого количества исследований. Достаточно сказать, что не разработаны даже рекомендации по норме суточного потребления хлора. Мышечная ткань человека содержит 0,20-0,52 % хлора, костная — 0,09 %; в крови — 2,89 г/л. В организме среднего человека (масса тела 70 кг) 95 г хлора. Ежедневно с пищей человек получает 3-6 г хлора, что с избытком покрывает потребность в этом элементе.

    Ионы хлора жизненно необходимы растениям. Хлор участвует в энергетическом обмене у растений, активируя окислительное фосфорилирование. Он необходим для образования кислорода в процессе фотосинтеза изолированными хлоропластами, стимулирует вспомогательные процессы фотосинтеза, прежде всего те из них, которые связаны с аккумулированием энергии. Хлор положительно влияет на поглощение корнями кислорода, соединений калия, кальция, магния. Чрезмерная концентрация ионов хлора в растениях может иметь и отрицательную сторону, например, снижать содержание хлорофилла, уменьшать активность фотосинтеза, задерживать рост и развитие растений. Но существуют растения, которые в процессе эволюции либо приспособились к засолению почв, либо в борьбе за пространство заняли пустующие солончаки на которых нет конкуренции. Растения произрастающие на засоленных почвах называются — галофиты, они накапливают хлориды в течение вегетационного сезона, а потом избавляются от излишков посредством листопада или выделяют хлориды на поверхность листьев и веток и получают двойную выгоду притеняя поверхнисти от солнечного света. В России галофиты произрастают на соляных куполах, выходах соляных отложений и засоленных понижениях вокруг соляных озёр Баскунчак, Эльтон.

    Среди микроорганизмов, так же известны галофилы — галобактерии — которые обитают в сильносоленых водах или почвах.

    Особенности работы и меры предосторожности

    Хлор — токсичный удушливый газ, при попадании в лёгкие вызывает ожог лёгочной ткани, удушье. Раздражающее действие на дыхательные пути оказывает при концентрации в воздухе около 0,006 мг/л (т.е. в два раза выше порога восприятия запаха хлора). Хлор был одним из первых химических отравляющих веществ, использованных Германией в Первую мировую войну. При работе с хлором следует пользоваться защитной спецодеждой, противогазом, перчатками. На короткое время защитить органы дыхания от попадания в них хлора можно тряпичной повязкой, смоченной раствором сульфита натрия Na 2 SO 3 или тиосульфата натрия Na 2 S 2 O 3 .

    ПДК хлора в атмосферном воздухе следующие: среднесуточная — 0,03 мг/м³; максимально разовая — 0,1 мг/м³; в рабочих помещениях промышленного предприятия — 1 мг/м³.

    Дополнительная информация

    Производство хлора в России
    Хлорид золота
    Хлорная вода
    Хлорная известь
    Хлорид первого основания Рейзе
    Хлорид второго основания Рейзе

    Соединения хлора
    Гипохлориты
    Перхлораты
    Хлорангидриды
    Хлораты
    Хлориды
    Хлорорганические соединения

    Анализируется

    — При помощи электродов сравнения ЭСр-10101 анализирующих содержание Cl— и К+.

Загрузка...
Top